lingchmao's picture
Upload 12 files
6ffe23f verified
raw
history blame
24.8 kB
import logging
import sys
import tempfile
from glob import glob
from torchsummary import summary
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast, GradScaler
import torch.nn as nn
import torchvision
import monai
from monai.metrics import DiceMetric, ConfusionMatrixMetric, MeanIoU
from monai.visualize import plot_2d_or_3d_image
from visualization import visualize_patient
from sliding_window import sw_inference
from data_preparation import build_dataset
from models import UNet2D, UNet3D
from loss import WeaklyDiceFocalLoss
from sklearn.linear_model import LinearRegression
from nrrd import write, read
import morphsnakes as ms
from monai.data import decollate_batch
def build_optimizer(model, config):
if config['LOSS'] == "gdice":
loss_function = monai.losses.GeneralizedDiceLoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'],
reduction="mean", to_onehot_y=True, sigmoid=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.GeneralizedDiceLoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean", to_onehot_y=False, softmax=True)
elif config['LOSS'] == 'cdice':
loss_function = monai.losses.DiceCELoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'],
reduction="mean", to_onehot_y=True, sigmoid=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.DiceCELoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean", to_onehot_y=False, softmax=True)
elif config['LOSS'] == 'mdice':
loss_function = monai.losses.MaskedDiceLoss()
elif config['LOSS'] == 'wdice':
# Example with 3 classes (including the background: label 0).
# The distance between the background class (label 0) and the other classes is the maximum, equal to 1.
# The distance between class 1 and class 2 is 0.5.
dist_mat = np.array([[0.0, 1.0, 1.0], [1.0, 0.0, 0.5], [1.0, 0.5, 0.0]], dtype=np.float32)
loss_function = monai.losses.GeneralizedWassersteinDiceLoss(dist_matrix=dist_mat)
elif config['LOSS'] == "fdice":
loss_function = monai.losses.DiceFocalLoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=True, sigmoid=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.DiceFocalLoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=False, softmax=True)
elif config['LOSS'] == "wfdice":
loss_function = WeaklyDiceFocalLoss(include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=True, sigmoid=True, lambda_weak=config['LAMBDA_WEAK']) if len(config['KEEP_CLASSES'])<=2 else WeaklyDiceFocalLoss(include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=False, softmax=True, lambda_weak=config['LAMBDA_WEAK'])
else:
loss_function = monai.losses.DiceLoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'],
reduction="mean", to_onehot_y=True, sigmoid=True, squared_pred=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.DiceLoss(
include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean", to_onehot_y=False, softmax=True, squared_pred=True)
eval_metrics = [
("sensitivity", ConfusionMatrixMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], metric_name='sensitivity', reduction="mean_batch")),
("specificity", ConfusionMatrixMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], metric_name='specificity', reduction="mean_batch")),
("accuracy", ConfusionMatrixMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], metric_name='accuracy', reduction="mean_batch")),
("dice", DiceMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean_batch")),
("IoU", MeanIoU(include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean_batch"))
]
optimizer = torch.optim.Adam(model.parameters(), config['LEARNING_RATE'], weight_decay=1e-5, amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config['MAX_EPOCHS'])
return loss_function, optimizer, lr_scheduler, eval_metrics
def load_weights(model, config):
try:
model.load_state_dict(torch.load("checkpoints/" + config['PRETRAINED_WEIGHTS'] + ".pth", map_location=torch.device(config['DEVICE'])))
print("Model weights from", config['PRETRAINED_WEIGHTS'], "have been loaded")
except Exception as e:
try:
model.load_state_dict(torch.load(config['PRETRAINED_WEIGHTS'], map_location=torch.device(config['DEVICE'])))
print("Model weights from", config['PRETRAINED_WEIGHTS'], "have been loaded")
except Exception as e: # load
print("WARNING: weights were not loaded. ", e)
pass
return model
def build_model(config):
config = get_defaults(config)
dropout_prob = config['DROPOUT']
if "SegResNetVAE" in config["MODEL_NAME"]:
model = monai.networks.nets.SegResNetVAE(
input_image_size=config['ROI_SIZE'] if "3D" in config['MODEL_NAME'] else (config['ROI_SIZE'][0], config['ROI_SIZE'][1]),
vae_estimate_std=False,
vae_default_std=0.3,
vae_nz=256,
spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
blocks_down=[1, 2, 2, 4],
blocks_up=[1, 1, 1],
init_filters=16,
in_channels=1,
norm='instance',
out_channels=len(config['KEEP_CLASSES']),
dropout_prob=dropout_prob,
).to(config['DEVICE'])
elif "SegResNet" in config["MODEL_NAME"]:
model = monai.networks.nets.SegResNet(
spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
blocks_down=[1, 2, 2, 4],
blocks_up=[1, 1, 1],
init_filters=16,
in_channels=1,
out_channels=len(config['KEEP_CLASSES']),
dropout_prob=dropout_prob,
norm="instance"
).to(config['DEVICE'])
elif "SwinUNETR" in config["MODEL_NAME"]:
model = monai.networks.nets.SwinUNETR(
img_size=config['ROI_SIZE'],
in_channels=1,
out_channels=len(config['KEEP_CLASSES']),
feature_size=48,
drop_rate=dropout_prob,
attn_drop_rate=0.0,
dropout_path_rate=0.0,
use_checkpoint=True
).to(config['DEVICE'])
elif "UNETR" in config["MODEL_NAME"]:
model = monai.networks.nets.UNETR(
img_size=config['ROI_SIZE'] if "3D" in config['MODEL_NAME'] else (config['ROI_SIZE'][0], config['ROI_SIZE'][1]),
in_channels=1,
out_channels=len(config['KEEP_CLASSES']),
feature_size=16,
hidden_size=256,
mlp_dim=3072,
num_heads=8,
pos_embed="perceptron",
norm_name="instance",
res_block=True,
dropout_rate=dropout_prob,
).to(config['DEVICE'])
elif "MANet" in config["MODEL_NAME"]:
if "2D" in config["MODEL_NAME"]:
model = UNet2D(
1,
len(config['KEEP_CLASSES']),
pab_channels=64,
use_batchnorm=True
).to(config['DEVICE'])
else:
model = UNet3D(
1,
len(config['KEEP_CLASSES']),
pab_channels=32,
use_batchnorm=True
).to(config['DEVICE'])
elif "UNetPlusPlus" in config["MODEL_NAME"]:
model = monai.networks.nets.BasicUNetPlusPlus(
spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
in_channels=1,
out_channels=len(config['KEEP_CLASSES']),
features=(32, 32, 64, 128, 256, 32),
norm="instance",
dropout=dropout_prob,
).to(config['DEVICE'])
elif "UNet1" in config['MODEL_NAME']:
model = monai.networks.nets.UNet(
spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
in_channels=1,
out_channels=len(config['KEEP_CLASSES']),
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
norm="instance"
).to(config['DEVICE'])
elif "UNet2" in config['MODEL_NAME']:
model = monai.networks.nets.UNet(
spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
in_channels=1,
out_channels=len(config['KEEP_CLASSES']),
channels=(32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=4,
norm="instance"
).to(config['DEVICE'])
else:
print(config["MODEL_NAME"], "is not a valid model name")
return None
try:
if "3D" in config['MODEL_NAME']:
print(summary(model, input_size=(1, config['ROI_SIZE'][0], config['ROI_SIZE'][1], config['ROI_SIZE'][2])))
else:
print(summary(model, input_size=(1, config['ROI_SIZE'][0], config['ROI_SIZE'][1])))
except Exception as e:
print("could not load model summary:", e)
if config['PRETRAINED_WEIGHTS'] is not None and config['PRETRAINED_WEIGHTS']:
model = load_weights(model, config)
return model
def train(model, train_loader, val_loader, loss_function, eval_metrics, optimizer, config,
scheduler=None, writer=None, postprocessing_transforms = None, weak_labels = None):
if writer is None: writer = SummaryWriter(log_dir="runs/" + config['EXPORT_FILE_NAME'])
best_metric, best_metric_epoch = -1, -1
prev_metric, patience, patience_counter = 1, config['EARLY_STOPPING_PATIENCE'], 0
if config['AUTOCAST']: scaler = GradScaler() # Initialize GradScaler for mixed precision training
for epoch in range(config['MAX_EPOCHS']):
print("-" * 10)
model.train()
epoch_loss, step = 0, 0
with tqdm(train_loader) as progress_bar:
for batch_data in progress_bar:
step += 1
inputs, labels = batch_data["image"].to(config['DEVICE']), batch_data["mask"].to(config['DEVICE'])
# only train with batches that have tumor; skip those without tumor
if config['TYPE'] == "tumor":
if torch.sum(labels[:,-1]) == 0:
continue
# check input shapes
if inputs is None or labels is None:
continue
if inputs.shape[-1] != labels.shape[-1] or inputs.shape[0] != labels.shape[0]:
print("WARNING: Batch skipped. Image and mask shape does not match:", inputs.shape[0], labels.shape[0])
continue
optimizer.zero_grad()
if not config['AUTOCAST']:
# segmentation output
outputs = model(inputs)
if "SegResNetVAE" in config["MODEL_NAME"]: outputs = outputs[0]
if isinstance(outputs, list): outputs = outputs[0]
# loss
if weak_labels is not None:
weak_label = torch.tensor([weak_labels[step]]).to(config['DEVICE'])
loss = loss_function(outputs, labels, weak_label) if config['LOSS'] == 'wfdice' else loss_function(outputs, labels)
loss.backward()
optimizer.step()
else:
with autocast():
outputs = model(inputs)
if "SegResNetVAE" in config["MODEL_NAME"]: outputs = outputs[0]
if isinstance(outputs, list): outputs = outputs[0]
loss = loss_function(outputs, labels, [weak_labels[step]]) if config['LOSS'] == 'wfdice' else loss_function(outputs, labels)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
if torch.isinf(loss).any():
print("Detected inf in gradients.")
else:
scaler.step(optimizer)
scaler.update()
epoch_loss += loss.item()
progress_bar.set_description(f'Epoch [{epoch+1}/{config["MAX_EPOCHS"]}], Loss: {epoch_loss/step:.4f}')
epoch_loss /= step
writer.add_scalar("train_loss_epoch", epoch_loss, epoch)
progress_bar.set_description(f'Epoch [{epoch+1}/{config["MAX_EPOCHS"]}], Loss: {epoch_loss:.4f}')
# validation
if (epoch + 1) % config['VAL_INTERVAL'] == 0:
# get a list of validation measures, pick one to be the decision maker
val_metrics, (val_images, val_labels, val_outputs) = evaluate(model, val_loader, eval_metrics, config, postprocessing_transforms)
if isinstance(config['EVAL_METRIC'], list):
cur_metric = np.mean([val_metrics[m] for m in config['EVAL_METRIC']])
else:
cur_metric = val_metrics[config['EVAL_METRIC']]
# determine if better than previous best validation metric
if cur_metric > best_metric:
best_metric, best_metric_epoch = cur_metric, epoch + 1
torch.save(model.state_dict(), "checkpoints/" + config['EXPORT_FILE_NAME'] + ".pth")
# early stopping
patience_counter = patience_counter + 1 if prev_metric > cur_metric else 0
if patience_counter == patience or epoch - best_metric_epoch > patience:
print("Early stopping at epoch", epoch + 1)
break
print(f'Current epoch: {epoch + 1} current avg {config["EVAL_METRIC"]}: {cur_metric :.4f} best avg {config["EVAL_METRIC"]}: {best_metric:.4f} at epoch {best_metric_epoch}')
prev_metric = cur_metric
# writer
for key, value in val_metrics.items():
writer.add_scalar("val_" + key, value, epoch)
plot_2d_or_3d_image(val_images, epoch + 1, writer, index=len(val_outputs)//2, tag="image",frame_dim=-1)
plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=len(val_outputs)//2, tag="label",frame_dim=-1)
plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=len(val_outputs)//2, tag="output",frame_dim=-1)
# update scheduler
try:
if scheduler is not None: scheduler.step()
except:
pass
print(f"Train completed, best {config['EVAL_METRIC']}: {best_metric:.4f} at epoch: {best_metric_epoch}")
writer.close()
return model, writer
def evaluate(model, val_loader, eval_metrics, config, postprocessing_transforms=None, use_liver_seg=False, export_filenames = [], export_file_metadata = []):
val_metrics = {}
model.eval()
with torch.no_grad():
step = 0
for val_data in val_loader:
# 3D: val_images has shape (1,C,H,W,Z)
# 2D: val_images has shape (B,C,H,W)
val_images, val_labels = val_data["image"].to(config['DEVICE']), val_data["mask"].to(config['DEVICE'])
if use_liver_seg: val_liver = val_data["pred_liver"].to(config['DEVICE'])
if (val_images[0].shape[-1] != val_labels[0].shape[-1]) or (
"3D" not in config["MODEL_NAME"] and val_images.shape[0] != val_labels.shape[0]):
print("WARNING: Batch skipped. Image and mask shape does not match:", val_images.shape, val_labels.shape)
continue
# convert outputs to probability
if "3D" in config["MODEL_NAME"]:
val_outputs = sw_inference(model, val_images, config['ROI_SIZE'], config['AUTOCAST'], discard_second_output='SegResNetVAE' in config['MODEL_NAME'])
else:
if "SegResNetVAE" in config["MODEL_NAME"]: val_outputs, _ = model(val_images)
else: val_outputs = model(val_images)
# post-procesing
if postprocessing_transforms is not None:
val_outputs = [postprocessing_transforms(i) for i in decollate_batch(val_outputs)]
# remove tumor predictions outside liver
for i in range(len(val_outputs)):
val_outputs[i][-1][torch.where(val_images[i][0] <= 1e-6)] = 0
# apply morphological snakes algorithm
if config['POSTPROCESSING_MORF']:
for i in range(len(val_outputs)):
val_outputs[i][-1] = torch.from_numpy(ms.morphological_chan_vese(val_images[i][0].cpu(), iterations=2, init_level_set=val_outputs[i][-1].cpu())).to(config['DEVICE'])
for i in range(len(val_outputs)):
if use_liver_seg:
# use liver model outputs for liver channel
val_outputs[i][1] = val_liver[i]
# if region is tumor, assign liver prediction to 0
val_outputs[i][1] -= val_outputs[i][2]
# compute metric for current iteration
for metric_name, metric in eval_metrics:
if isinstance(val_outputs[0], list):
val_outputs = val_outputs[0]
metric(val_outputs, val_labels)
# save prediction to local folder
if len(export_filenames) > 0:
for _ in range(len(val_outputs)):
numpy_array = val_outputs[_].cpu().detach().numpy()
write(export_filenames[step], numpy_array[-1], header=export_file_metadata[step])
print(" Segmentation exported to", export_filenames[step])
step += 1
# aggregate the final mean metric
for metric_name, metric in eval_metrics:
if "dice" in metric_name or "IoU" in metric_name: metric_value = metric.aggregate().tolist()
else: metric_value = metric.aggregate()[0].tolist() # a list of accuracies, one per class
val_metrics[metric_name + "_avg"] = np.mean(metric_value)
if config['TYPE'] != "liver":
for c in range(1, len(metric_value) + 1): # class-wise accuracies
val_metrics[metric_name + "_class" + str(c)] = metric_value[c-1]
metric.reset()
return val_metrics, (val_images, val_labels, val_outputs)
def get_defaults(config):
if 'TRAIN' not in config.keys(): config['TRAIN'] = True
if 'VALID_PATIENT_RATIO' not in config.keys(): config['VALID_PATIENT_RATIO'] = 0.2
if 'VAL_INTERVAL' not in config.keys(): config['VAL_INTERVAL'] = 1
if 'VAL_INTERVAL' not in config.keys(): config['DROPOUT'] = 0.1
if 'EARLY_STOPPING_PATIENCE' not in config.keys(): config['EARLY_STOPPING_PATIENCE'] = 20
if 'AUTOCAST' not in config.keys(): config['AUTOCAST'] = False
if 'NUM_WORKERS' not in config.keys(): config['NUM_WORKERS'] = 0
if 'DROPOUT' not in config.keys(): config['DROPOUT'] = 0.1
if 'ONESAMPLETESTRUN' not in config.keys(): config['ONESAMPLETESTRUN'] = False
if 'TRAIN' not in config.keys(): config['TRAIN'] = True
if 'DATA_AUGMENTATION' not in config.keys(): config['DATA_AUGMENTATION'] = False
if 'POSTPROCESSING_MORF' not in config.keys(): config['POSTPROCESSING_MORF'] = False
if 'PREPROCESSING' not in config.keys(): config['PREPROCESSING'] = ""
if 'PRETRAINED_WEIGHTS' not in config.keys(): config['PRETRAINED_WEIGHTS'] = ""
if 'EVAL_INCLUDE_BACKGROUND' not in config.keys():
if config['TYPE'] == "liver": config['EVAL_INCLUDE_BACKGROUND'] = True
else: config['EVAL_INCLUDE_BACKGROUND'] = False
if 'EVAL_METRIC' not in config.keys():
if config['TYPE'] == "liver": config['EVAL_METRIC'] = ["dice_avg"]
else: config['EVAL_METRIC'] = ["dice_class2"]
if 'CLINICAL_DATA_FILE' not in config.keys(): config['CLINICAL_DATA_FILE'] = "Dataset/HCC-TACE-Seg_clinical_data-V2.xlsx"
if 'CLINICAL_PREDICTORS' not in config.keys(): config['CLINICAL_PREDICTORS'] = ['T_involvment', 'CLIP_Score','Personal history of cancer', 'TNM', 'Metastasis','fhx_can', 'Alcohol', 'Smoking', 'Evidence_of_cirh', 'AFP', 'age', 'Diabetes', 'Lymphnodes', 'Interval_BL', 'TTP']
if 'LAMBDA_WEAK' not in config.keys(): config['LAMBDA_WEAK'] = 0.5
if 'MASKNONLIVER' not in config.keys(): config['MASKNONLIVER'] = False
if config['TYPE'] == "liver": config['KEEP_CLASSES']=["normal", "liver"]
elif config['TYPE'] == "tumor": config['KEEP_CLASSES']=["normal", "liver", "tumor"]
else: config['KEEP_CLASSES'] = ["normal", "liver", "tumor", "portal vein", "abdominal aorta"]
config['DEVICE'] = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config['EXPORT_FILE_NAME'] = config['TYPE']+ "_" + config['MODEL_NAME'] + "_" + config['LOSS'] + "_batchsize" + str(config['BATCH_SIZE']) + "_DA" + str(config['DATA_AUGMENTATION']) + "_HU" + str(config['HU_RANGE'][0]) + "-" + str(config['HU_RANGE'][1]) + "_" + config['PREPROCESSING'] + "_" + str(config['ROI_SIZE'][0]) + "_" + str(config['ROI_SIZE'][1]) + "_" + str(config['ROI_SIZE'][2]) + "_dropout" + str(config['DROPOUT'])
if config['MASKNONLIVER']: config['EXPORT_FILE_NAME'] += "_wobackground"
if config['LOSS'] == "wfdice": config['EXPORT_FILE_NAME'] += "_weaklambda" + str(config['LAMBDA_WEAK'])
if config['PRETRAINED_WEIGHTS'] != "" and config['PRETRAINED_WEIGHTS'] != config['EXPORT_FILE_NAME']: config['EXPORT_FILE_NAME'] += "_pretraining"
if config['POSTPROCESSING_MORF']: config['EXPORT_FILE_NAME'] += "_wpostmorf"
if not config['EVAL_INCLUDE_BACKGROUND']: config['EXPORT_FILE_NAME'] += "_evalnobackground"
return config
def train_clinical(df_clinical):
clinical_model = LinearRegression()
# train model
print("Training model using", df_clinical.loc[:, df_clinical.columns != 'tumor_ratio'].shape[1], "features")
print(df_clinical.head())
clinical_model.fit(df_clinical.loc[:, df_clinical.columns != 'tumor_ratio'], df_clinical['tumor_ratio'])
# obtain predicted ratios
pred = clinical_model.predict(df_clinical.loc[:, df_clinical.columns != 'tumor_ratio'])
# evaluate
corr = np.corrcoef(pred, df_clinical['tumor_ratio'])[0][1]
mae = np.mean(np.abs(pred - df_clinical['tumor_ratio']))
print(f"The clinical model was fitted. Corr = {corr: .6f} MAE = {mae: .6f}")
return pred
def model_pipeline(config=None, plot=True):
torch.cuda.empty_cache()
config = get_defaults(config)
print(f"You Are Running on a: {config['DEVICE']}")
print("file name:", config['EXPORT_FILE_NAME'])
writer = SummaryWriter(log_dir="runs/" + config['EXPORT_FILE_NAME'])
# prepare data
train_loader, valid_loader, test_loader, postprocessing_transforms, df_clinical_train = build_dataset(config, get_clinical=config['LOSS']=="wfdice")
# train clinical model
if config['LOSS'] == "wfdice": weak_labels = train_clinical(df_clinical_train)
else: weak_labels = None
# train segmentation model
model = build_model(config)
loss_function, optimizer, lr_scheduler, eval_metrics = build_optimizer(model, config)
if config['TRAIN']:
train(model, train_loader, valid_loader, loss_function, eval_metrics, optimizer, config, lr_scheduler, writer, postprocessing_transforms, weak_labels)
model.load_state_dict(torch.load("checkpoints/" + config['EXPORT_FILE_NAME'] + ".pth", map_location=torch.device(config['DEVICE'])))
if config['ONESAMPLETESTRUN']:
return None, None, None
# test segmentation model
test_metrics, (test_images, test_labels, test_outputs) = evaluate(model, test_loader, eval_metrics, config, postprocessing_transforms)
print("Test metrics")
for key, value in test_metrics.items():
print(f" {key}: {value:.4f}")
# visualize
if plot:
if "3D" in config['MODEL_NAME']:
visualize_patient(test_images[0].cpu(), mask=test_labels[0].cpu(), n_slices=9, title="ground truth", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)
visualize_patient(test_images[0].cpu(), mask=test_outputs[0].cpu(), n_slices=9, title="predicted", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)
else:
visualize_patient(test_images.cpu(), mask=test_labels.cpu(), n_slices=9, title="ground truth", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)
visualize_patient(test_images.cpu(), mask=torch.stack(test_outputs).cpu(), n_slices=9, title="predicted", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)
return (test_images, test_labels, test_outputs)