File size: 6,364 Bytes
866cee0
 
 
36ff46c
866cee0
 
 
 
 
 
0ca6b56
866cee0
0571917
 
 
 
 
 
 
 
 
 
866cee0
 
 
 
 
 
 
36ff46c
 
866cee0
 
 
 
 
 
 
 
 
 
 
 
36ff46c
 
866cee0
 
36ff46c
866cee0
36ff46c
 
 
 
 
 
 
 
 
 
 
 
 
 
866cee0
36ff46c
866cee0
 
 
 
36ff46c
 
 
 
 
 
866cee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36ff46c
866cee0
 
 
 
 
 
 
 
 
 
 
 
36ff46c
 
866cee0
 
 
36ff46c
 
 
 
 
 
 
 
 
 
866cee0
 
 
 
 
 
 
36ff46c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import streamlit as st
import json
import pandas as pd
import os
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
import plotly.express as px
import plotly.graph_objects as go


if 'api_token' not in st.session_state:
    st.session_state.api_token = DEFAULT_TOKEN = os.getenv('NILM_API_TOKEN')

page_id = 5
if 'current_page' not in st.session_state:
    st.session_state.current_page = page_id
elif st.session_state.current_page != page_id:
    # Clear API response when switching to this page
    if 'api_response' in st.session_state:
        st.session_state.api_response = None
    # Update current page
    st.session_state.current_page = page_id

# Initialize session state variables
if 'current_file' not in st.session_state:
    st.session_state.current_file = None
if 'json_data' not in st.session_state:
    st.session_state.json_data = None
if 'api_response' not in st.session_state:
    st.session_state.api_response = None
if 'using_default_file' not in st.session_state:
    st.session_state.using_default_file = True

st.title("Energy Consumption Anomaly Detection")

st.markdown("""
This service analyzes energy consumption patterns to detect anomalies and unusual behavior in your data.

### Features
- Real-time anomaly detection
- Consumption irregularity identification
- Interactive visualization of detected anomalies
""")

# Default file path
default_file_path = "samples/5_anomaly_detection_consumption.json"  # Adjust this path to your default file

# File upload and processing
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json'])

# Load default file if no file is uploaded and using_default_file is True
if uploaded_file is None and st.session_state.using_default_file:
    if os.path.exists(default_file_path):
        st.info(f"Using default file: {default_file_path}")
        with open(default_file_path, 'r') as f:
            file_contents = f.read()
            if st.session_state.current_file != file_contents:
                st.session_state.current_file = file_contents
                st.session_state.json_data = json.loads(file_contents)
    else:
        st.warning(f"Default file not found at: {default_file_path}")
        st.session_state.using_default_file = False

# If a file is uploaded, process it
if uploaded_file:
    st.session_state.using_default_file = False
    try:
        file_contents = uploaded_file.read()
        st.session_state.current_file = file_contents
        st.session_state.json_data = json.loads(file_contents)
    except Exception as e:
        st.error(f"Error processing file: {str(e)}")

# Process and display data if available
if st.session_state.json_data:
    try:
        dfs = load_and_process_data(st.session_state.json_data)
        if dfs:
            st.header("Input Data Analysis")
            tabs = st.tabs(["Visualization", "Statistics", "Raw Data"])
            
            with tabs[0]:
                for unit, df in dfs.items():
                    st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True)
                    
                    # Show basic statistical analysis
                    col1, col2, col3 = st.columns(3)
                    with col1:
                        st.metric("Average Consumption", 
                                f"{df['datacellar:value'].mean():.2f} {unit}")
                    with col2:
                        st.metric("Standard Deviation", 
                                f"{df['datacellar:value'].std():.2f} {unit}")
                    with col3:
                        st.metric("Total Samples", 
                                len(df))
            
            with tabs[1]:
                display_statistics(dfs)
            
            with tabs[2]:
                st.json(st.session_state.json_data)
            
            # Add analysis options
            st.subheader("Anomaly Detection")
            col1, col2 = st.columns(2)
            with col1:
                if st.button("Detect Anomalies", key="detect_button"):
                    if not st.session_state.api_token:
                        st.error("Please enter your API token in the sidebar first.")
                    else:
                        with st.spinner("Analyzing consumption patterns..."):
                            # Add sensitivity and window_size to the request
                            modified_data = st.session_state.json_data.copy()
                           
                            # Convert back to JSON and call API
                            modified_content = json.dumps(modified_data).encode('utf-8')
                            st.session_state.api_response = call_api(
                                modified_content,
                                st.session_state.api_token,
                                "inference_consumption_ad"
                            )
    except Exception as e:
        st.error(f"Error processing data: {str(e)}")

# Display API results
if st.session_state.api_response:
    st.header("Anomaly Detection Results")
    tabs = st.tabs(["Anomaly Visualization", "Raw Results"])
    
    with tabs[0]:
        response_dfs = load_and_process_data(
            st.session_state.api_response,
            input_data=st.session_state.json_data
        )
        if response_dfs:
            anomalies = response_dfs['boolean']
            anomalies = anomalies[anomalies['datacellar:value']==True]
            
            del response_dfs['boolean']
            for unit, df in response_dfs.items():
                fig = create_time_series_plot(df, unit, service_type="Anomaly Detection")
                # Get df values for anomalies
                anomaly_df = df.iloc[anomalies['datacellar:timeStamp'].index]
                fig.add_trace(go.Scatter(
                    x=anomaly_df['datacellar:timeStamp'], 
                    y=anomaly_df['datacellar:value'], 
                    mode='markers', 
                    marker=dict(color='red'), 
                    name='Anomalies'
                ))
                # Create visualization with highlighted anomalies
                st.plotly_chart(
                    fig,
                    use_container_width=True
                )
    
    with tabs[1]:
        st.json(st.session_state.api_response)