Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import json | |
# import pandas as pd | |
# import plotly.express as px | |
# import requests | |
# from datetime import datetime | |
# import plotly.graph_objects as go | |
# import os | |
# import logging | |
# # Configure the main page | |
# st.set_page_config( | |
# page_title="Energy Data Analysis Dashboard", | |
# page_icon="⚡", | |
# layout="wide", | |
# initial_sidebar_state="expanded" | |
# ) | |
# #DEFAULT_TOKEN = os.getenv('NILM_API_TOKEN', '') | |
# DEFAULT_TOKEN = 'p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ' | |
# print(DEFAULT_TOKEN) | |
# logger = logging.getLogger("Data cellar demo") | |
# logger.info(f"token : {DEFAULT_TOKEN}") | |
# # Initialize session state variables | |
# if 'api_token' not in st.session_state: | |
# st.session_state.api_token = DEFAULT_TOKEN | |
# if 'current_file' not in st.session_state: | |
# st.session_state.current_file = None | |
# if 'json_data' not in st.session_state: | |
# st.session_state.json_data = None | |
# if 'api_response' not in st.session_state: | |
# st.session_state.api_response = None | |
# # Sidebar configuration | |
# with st.sidebar: | |
# st.markdown("## API Configuration") | |
# api_token = st.text_input("API Token", value=st.session_state.api_token, type="password") | |
# if api_token: | |
# st.session_state.api_token = api_token | |
# st.markdown(""" | |
# ## About | |
# This dashboard provides analysis of energy data through various services | |
# including NILM analysis, consumption and production forecasting. | |
# """) | |
# # Main page content | |
# st.title("Energy Data Analysis Dashboard") | |
# # Welcome message and service descriptions | |
# st.markdown(""" | |
# Welcome to the Energy Data Analysis Dashboard! This platform provides comprehensive tools for analyzing energy consumption and production data. | |
# ### Available Services | |
# You can access the following services through the navigation menu on the left: | |
# #### 1. Energy Consumption Forecasting | |
# - **Short Term**: Predict energy consumption patterns in the near future | |
# - **Long Term**: Generate long-range consumption forecasts | |
# #### 2. Energy Production Analysis | |
# - **Short Term Production**: Forecast PV panel energy production | |
# - **NILM Analysis**: Non-intrusive load monitoring for detailed consumption breakdown | |
# #### 3. Advanced Analytics | |
# - **Anomaly Detection**: Identify unusual patterns in energy consumption | |
# ### Getting Started | |
# 1. Select a service from the navigation menu on the left | |
# 2. Upload your energy data file in JSON format | |
# 3. Configure your API token if needed | |
# 4. Run the analysis and explore the results | |
# Each service page provides specific visualizations and analytics tailored to your needs. | |
# """) | |
# # Add version info and additional resources in an expander | |
# with st.expander("Additional Information"): | |
# st.markdown(""" | |
# ### Usage Tips | |
# - Ensure your data is in the correct JSON format | |
# - Keep your API token secure | |
# - Use the visualization tools to explore your data | |
# - Export results for further analysis | |
# ### Support | |
# For technical support or questions about the services, please contact your system administrator. | |
# """) | |
# # Footer | |
# st.markdown(""" | |
# --- | |
# Made with ❤️ by tLINKS Foundation | |
# """) | |
import streamlit as st | |
import pandas as pd | |
import pickle | |
# Load Model | |
model = pickle.load(open('logreg_model.pkl', 'rb')) | |
st.title('Iris Variety Prediction') | |
# Form | |
with st.form(key='form_parameters'): | |
sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0) | |
sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0) | |
petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0) | |
petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1) | |
st.markdown('---') | |
submitted = st.form_submit_button('Predict') | |
# Data Inference | |
data_inf = { | |
'sepal.length': sepal_length, | |
'sepal.width': sepal_width, | |
'petal.length': petal_length, | |
'petal.width': petal_width | |
} | |
data_inf = pd.DataFrame([data_inf]) | |
if submitted: | |
# Predict using Logistic Regression | |
y_pred_inf = model.predict(data_inf) | |
st.write('## Iris Variety = '+ str(y_pred_inf)) |