Spaces:
Sleeping
Sleeping
File size: 7,238 Bytes
1089f07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
from typing import List, Optional, Tuple, Any
from collections import OrderedDict
import pandas as pd
from loguru import logger
import pm4py
import plotly.graph_objects as go
import networkx as nx
import matplotlib.pyplot as plt
from PIL import Image
from pydantic import BaseModel
class ProcessMap(BaseModel):
net: Any
start_activities: List | None
end_activities: List | None
img: Any | None
def dfg2networkx( dfg, start, end):
"""Dfg to networkx
Argument
dfg: a list of dict of edges from directly-follow-graph
start: a dict of start activities
end: a dict of end activities
Return
nx: networkx graph object
"""
PROCESS_START = '#Start#'
PROCESS_END = '#End#'
nodes = { PROCESS_START: 0, PROCESS_END: 1}
node_idx = 2
for activity in start:
assert activity not in nodes, f"#ERROR: {activity} exists"
nodes[activity] = node_idx
node_idx += 1
for activity in end:
assert activity not in nodes, f"#ERROR: {activity} exists"
nodes[activity] = node_idx
node_idx += 1
for node in dfg:
left_activity = node[0]
if left_activity not in nodes:
nodes[left_activity] = node_idx
node_idx +=1
right_activity = node[1]
if right_activity not in nodes:
nodes[right_activity] = node_idx
node_idx +=1
nodes = list(nodes.keys())
edges = []
for activity in start:
from_id = str(PROCESS_START)
to_id = str(activity)
edges.append( ( PROCESS_START, activity) )
for activity in end:
from_id = str(activity)
to_id = str(PROCESS_END)
edges.append( ( activity, PROCESS_END) )
for transition in dfg:
edges.append( ( transition[0], transition[1]) )
nx_graph = nx.DiGraph()
nx_graph.add_nodes_from( nodes)
nx_graph.add_edges_from(edges)
return nx_graph
def discover_process_map_variants( df, top_k: int = 0, type: str = 'dfg'):
"""Discover process map from data frame (raw event log)
Argument
df: a pandas dataframe
top_k: top k variants
type: dfg or petri
Return
dfg, start_activities, end_activities
"""
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
if top_k > 0:
event_log = pm4py.filter_variants_top_k( event_log, k = top_k)
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
return dfg, start_activities, end_activities
def discover_process_map_activities_connections( df, activity_rank: int = 0, connection_rank: int = 0, state: dict = {}, type: str = 'dfg'):
"""Discover process map from data frame (raw event log)
Argument
df: a pandas dataframe
top_k: top k variants
type: dfg or petri
Return
dfg, start_activities, end_activities
"""
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
full_dfg, _, __ = pm4py.discover_dfg(event_log)
ranked_connections = OrderedDict(sorted(full_dfg.items(), key=lambda item: item[1], reverse=True))
if activity_rank > 0:
pass
if connection_rank > 0:
top_variant_connections = state.get('top_variant_connections', [])
filtered_connections = list(ranked_connections.keys())[ : (connection_rank+ len(ranked_connections))]
else:
filtered_connections = list(ranked_connections.keys())
event_log = pm4py.filter_directly_follows_relation( event_log, relations = filtered_connections)
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
return dfg, start_activities, end_activities
def discover_process_map( df: pd.DataFrame, type: str = 'dfg'):
"""
"""
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
if type=='dfg':
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
return dfg, start_activities, end_activities
elif type=='petrinet':
net, im, fm = pm4py.discover_petri_net_inductive(event_log)
pm4py.view_petri_net( petri_net=net, initial_marking=im, final_marking=fm)
file_path = 'output/petri_net.png'
pm4py.save_vis_petri_net( net, im, fm, file_path)
img = Image.open(file_path)
return net, img
elif type=='bpmn':
net = pm4py.discover_bpmn_inductive(event_log)
pm4py.view_bpmn(net, format='png')
file_path = 'output/bpmn.png'
pm4py.save_vis_bpmn( net, file_path)
img = Image.open(file_path)
return net, img
else:
raise Exception(f"Invalid type: {type}")
def view_networkx( nx_graph, layout):
"""
Argument
nx_graph
Return
graph object
fig.update_xaxes(showticklabels=False)
fig.update_yaxes(showticklabels=False)
"""
# Create node scatter plot
node_trace = go.Scatter(
x=[layout[n][0] for n in nx_graph.nodes],
y=[layout[n][1] for n in nx_graph.nodes],
text=list(nx_graph.nodes),
mode='markers+text',
hovertext = [n for n in nx_graph.nodes],
textposition='top center',
marker=dict(size=5, color='LightSkyBlue', line=dict(width=2))
)
# Create edge lines
edge_trace = go.Scatter(
x=(),
y=(),
line=dict(width=1.5, color='#888'),
hoverinfo='none',
mode='lines'
)
# Add arrows for directed edges
annotations = []
for edge in nx_graph.edges:
x0, y0 = layout[edge[0]]
x1, y1 = layout[edge[1]]
edge_trace['x'] += (x0, x1, None)
edge_trace['y'] += (y0, y1, None)
# Calculate direction of the arrow
annotations.append(
dict(
ax=x0,
ay=y0,
axref='x',
ayref='y',
x=x1,
y=y1,
xref='x',
yref='y',
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor='Gray'
)
)
# Draw the figure
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=0),
annotations=annotations,
xaxis=dict(showgrid=False, zeroline=False),
yaxis=dict(showgrid=False, zeroline=False)
))
fig = fig.update_xaxes(showticklabels=False)
fig = fig.update_yaxes(showticklabels=False)
return fig
def view_process_map( nx_graph, process_type: str = 'dfg', layout_type: str = 'sfdp'):
"""
"""
layout = nx.nx_agraph.graphviz_layout( nx_graph, prog=layout_type)
fig = view_networkx(nx_graph, layout)
return fig |