Spaces:
Sleeping
Sleeping
File size: 6,846 Bytes
1089f07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import logging
from io import StringIO
from pathlib import Path
from collections import OrderedDict
import plotly.express as px
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
# from PIL import Image
import matplotlib.pyplot as plt
# import cv2
# import numpy as np
import plotly.graph_objects as go
import networkx as nx
from model import dfg2networkx, discover_process_map, discover_process_map_activities_connections, discover_process_map_variants, view_process_map
load_dotenv()
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
def get_data(temp_file, state: dict):
# print(f"temp_file: {temp_file}")
if isinstance(temp_file, str):
# df = pd.read_csv(StringIO(temp_file), parse_dates=[ "Start", "Finish"])
df = pd.read_csv(temp_file, sep=';', dtype={'case_id': str}, parse_dates = ['timestamp'])
df.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp']) # format='%Y-%m-%d %H:%M:%S'
else:
# df = pd.read_csv(temp_file.name, ) # parse_dates=[ "Start", "Finish"]
df = pd.read_csv(temp_file.name, sep=';', dtype={'case_id': str}, parse_dates = ['timestamp'])
df.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'])
# logger.debug(df.head())
# logger.debug(df.dtypes)
state['df'] = df
return df, state
def get_stats(state: dict):
df = state.get('df', pd.DataFrame()).copy()
summary = pd.DataFrame({
"metric": ["資料筆數", "Case 數量", "Activity 數量", "起始時間", "結束時間"],
"value": [ df.shape[0], df['case_id'].nunique(), df['activity'].nunique(), df['timestamp'].min(), df['timestamp'].max() ]
})
case_stats = df.groupby(
by = ['case_id'], as_index=False
).agg(count = ('activity', len)).reset_index()
logger.debug(f"case stats: {case_stats}")
case_lead_time = df.groupby(
by = ['case_id'], as_index=False
).agg( duration = ('timestamp', lambda x: (x.max() - x.min()).total_seconds()//3600 )).reset_index()
def avg_duration(x):
return pd.Series({ "avg_duration": (x.timestamp.max() - x.timestamp.min()).total_seconds()//3600})
case_avg_duration = df.groupby(
by = ['case_id'], as_index=False
).apply(
avg_duration
)
logger.debug(f"case lead time: {case_lead_time}")
return (
summary,
gr.BarPlot( case_stats, x="case_id", y="count", title="Case Stats", tooltip = ["case_id", "count"], width=None),
gr.BarPlot( case_lead_time, x="case_id", y="duration", title="Case Lead Time", tooltip = ["case_id", "duration"], width=None),
gr.BarPlot( case_avg_duration, x="case_id", y="avg_duration", title="Case Average Duration", tooltip = ["case_id", "avg_duration"], width=None),
state
)
def get_process_map( state: dict = {}):
df = state.get('df', pd.DataFrame()).copy()
net, img = discover_process_map( df, type='petrinet')
return img, state
def get_process_map_variants( top_k: int = 1, state: dict = {}):
"""
"""
df = state.get('df', pd.DataFrame()).copy()
dfg, start_activities, end_activities = discover_process_map_variants( df, top_k, type='dfg')
top_variant_connections = OrderedDict(sorted(dfg.items(), key=lambda item: item[1], reverse=True))
state['top_variant_connections'] = top_variant_connections
if 'top_variant' not in state and top_k == 1:
state['top_variant'] = {'dfg': dfg, 'start_activities': start_activities, 'end_activities': end_activities}
nx_graph = dfg2networkx( dfg, start_activities, end_activities)
chart = view_process_map( nx_graph, process_type='dfg', layout_type='sfdp')
return chart, state
def get_process_map_activities_connections( activity_rank: int = 0, connection_rank: int = 0, state: dict = {}):
"""
"""
df = state.get('df', pd.DataFrame()).copy()
dfg, start_activities, end_activities = discover_process_map_activities_connections( df, activity_rank = activity_rank, connection_rank = connection_rank, state = state)
nx_graph = dfg2networkx( dfg, start_activities, end_activities)
chart = view_process_map( nx_graph, process_type='dfg', layout_type='sfdp')
return chart, state
## --- block --- ##
css = """
h1 {
text-align: center;
display:block;
}
"""
demo = gr.Blocks(css = css)
with demo:
gr.Markdown("# 🌟 Process Dicovery 🌟")
state = gr.State(value={})
with gr.Row():
upl_btn = gr.UploadButton(label="Upload", file_types = ['.csv'], file_count = "single")
# with gr.Row('Data Preview'):
with gr.Accordion('Data Preview'):
df = gr.Dataframe()
upl_btn.upload( fn=get_data, inputs = [upl_btn, state], outputs=[df, state])
with gr.Row():
with gr.Tab('Data Explorer'):
# outputs.append(gr.Dataframe( label="Event logs"))
de_btn = gr.Button("Get Stats")
with gr.Row():
summary = gr.Dataframe( label="Summary", interactive=False, height=300)
chart1 = gr.BarPlot( label="Case Stats")
chart2 = gr.BarPlot( label="Case Lead Time Stats")
chart3 = gr.BarPlot( label="Case Average Activity Time Stats")
de_btn.click( fn=get_stats, inputs = [state], outputs=[ summary, chart1, chart2, chart3, state])
with gr.Tab('Variant Explorer'):
ve_btn = gr.Button("Get Variants")
top_k_variant_selector = gr.Slider(0, 10, value=1, step=1, label="Top-K", info="選擇 Variant 數量(0: 全選)")
pmchart = gr.Plot( label="Process Map")
ve_btn.click( fn=get_process_map_variants, inputs = [ top_k_variant_selector, state], outputs=[ pmchart, state])
with gr.Tab('Process Explorer'):
pe_btn = gr.Button("Get Activities & Connections")
with gr.Column():
top_k_activity_selector = gr.Slider(0, 10, value=1, step=1, label="Activity", info="【pending】增減 Top Activity 數量(0: 全選)")
top_k_connection_selector = gr.Slider(0, 10, value=1, step=1, label="Connection", info="增減 Top Connection 數量(0: 全選)")
pmchart = gr.Plot( label="Process Map")
pe_btn.click( fn=get_process_map_activities_connections, inputs = [ top_k_activity_selector, top_k_connection_selector, state], outputs=[ pmchart, state])
with gr.Tab('Process Model'):
cc_btn = gr.Button("Get Process Model")
img = gr.Image( label="Process Model")
cc_btn.click( fn=get_process_map, inputs = [state], outputs=[ img, state])
if __name__ == "__main__":
demo.launch(
# share=True,
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT")),
auth=( os.environ.get("USER_NAME"), os.environ.get("PASSWORD"))
)
|