kota
initial commit
e60e568
raw
history blame
10.7 kB
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from abc import ABC
from collections import Counter
from typing import List, Optional, Collection, Any, Tuple, Generic, Dict
from pm4py.util import nx_utils
from pm4py.algo.discovery.inductive.cuts.abc import Cut, T
from pm4py.algo.discovery.inductive.dtypes.im_dfg import InductiveDFG
from pm4py.algo.discovery.inductive.dtypes.im_ds import IMDataStructureUVCL, IMDataStructureDFG
from pm4py.objects.dfg import util as dfu
from pm4py.objects.dfg.obj import DFG
from pm4py.objects.process_tree.obj import Operator, ProcessTree
from pm4py.util.compression.dtypes import UVCL
class LoopCut(Cut[T], ABC, Generic[T]):
@classmethod
def operator(cls, parameters: Optional[Dict[str, Any]] = None) -> ProcessTree:
return ProcessTree(operator=Operator.LOOP)
@classmethod
def holds(cls, obj: T, parameters: Optional[Dict[str, Any]] = None) -> Optional[List[Collection[Any]]]:
"""
This method finds a loop cut in the dfg.
Implementation follows function LoopCut on page 190 of
"Robust Process Mining with Guarantees" by Sander J.J. Leemans (ISBN: 978-90-386-4257-4)
Basic Steps:
1. merge all start and end activities in one group ('do' group)
2. remove start/end activities from the dfg
3. detect connected components in (undirected representative) of the reduced graph
4. check if each component meets the start/end criteria of the loop cut definition (merge with the 'do' group if not)
5. return the cut if at least two groups remain
"""
dfg = obj.dfg
start_activities = set(dfg.start_activities.keys())
end_activities = set(dfg.end_activities.keys())
if len(dfg.graph) == 0:
return None
groups = [start_activities.union(end_activities)]
for c in cls._compute_connected_components(dfg, start_activities, end_activities):
groups.append(set(c.nodes))
groups = cls._exclude_sets_non_reachable_from_start(dfg, start_activities, end_activities, groups)
groups = cls._exclude_sets_no_reachable_from_end(dfg, start_activities, end_activities, groups)
groups = cls._check_start_completeness(dfg, start_activities, end_activities, groups)
groups = cls._check_end_completeness(dfg, start_activities, end_activities, groups)
groups = list(filter(lambda g: len(g) > 0, groups))
return groups if len(groups) > 1 else None
@classmethod
def _check_start_completeness(cls, dfg: DFG, start_activities: Collection[Any], end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
i = 1
while i < len(groups):
merge = False
for a in groups[i]:
if merge:
break
for (x, b) in dfg.graph:
if x == a and b in start_activities:
for s in start_activities:
if not (a, s) in dfg.graph:
merge = True
if merge:
groups[0] = set(groups[0]).union(groups[i])
del groups[i]
continue
i = i + 1
return groups
@classmethod
def _check_end_completeness(cls, dfg: DFG, start_activities: Collection[Any], end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
i = 1
while i < len(groups):
merge = False
for a in groups[i]:
if merge:
break
for (b, x) in dfg.graph:
if x == a and b in end_activities:
for e in end_activities:
if not (e, a) in dfg.graph:
merge = True
if merge:
groups[0] = set(groups[0]).union(groups[i])
del groups[i]
continue
i = i + 1
return groups
@classmethod
def _exclude_sets_non_reachable_from_start(cls, dfg: DFG, start_activities: Collection[Any],
end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
for a in set(start_activities).difference(set(end_activities)):
for (x, b) in dfg.graph:
if x == a:
group_a, group_b = None, None
for group in groups:
group_a = group if a in group else group_a
group_b = group if b in group else group_b
groups = [group for group in groups if group != group_a and group != group_b]
# we are always merging on the do-part
groups.insert(0, group_a.union(group_b))
return groups
@classmethod
def _exclude_sets_no_reachable_from_end(cls, dfg: DFG, start_activities: Collection[Any],
end_activities: Collection[Any],
groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[Collection[Any]]:
for b in set(end_activities).difference(start_activities):
for (a, x) in dfg.graph:
if x == b:
group_a, group_b = None, None
for group in groups:
group_a = group if a in group else group_a
group_b = group if b in group else group_b
groups = [group for group in groups if group != group_a and group != group_b]
groups.insert(0, group_a.union(group_b))
return groups
@classmethod
def _compute_connected_components(cls, dfg: DFG, start_activities: Collection[Any],
end_activities: Collection[Any], parameters: Optional[Dict[str, Any]] = None):
nxd = dfu.as_nx_graph(dfg)
[nxd.remove_edge(a, b) for (a, b) in dfg.graph if
a in start_activities or a in end_activities or b in start_activities or b in end_activities]
[nxd.remove_node(a) for a in start_activities if nxd.has_node(a)]
[nxd.remove_node(a) for a in end_activities if nxd.has_node(a)]
nxu = nxd.to_undirected()
return [nxd.subgraph(c).copy() for c in nx_utils.connected_components(nxu)]
class LoopCutUVCL(LoopCut[IMDataStructureUVCL]):
@classmethod
def project(cls, obj: IMDataStructureUVCL, groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[IMDataStructureUVCL]:
do = groups[0]
redo = groups[1:]
redo_activities = [y for x in redo for y in x]
do_log = Counter()
redo_logs = [Counter() for i in range(len(redo))]
for t in obj.data_structure:
do_trace = tuple()
redo_trace = tuple()
for e in t:
if e in do:
do_trace = do_trace + (e,)
if len(redo_trace) > 0:
redo_logs = cls._append_trace_to_redo_log(redo_trace, redo_logs, redo, obj.data_structure[t])
redo_trace = tuple()
else:
if e in redo_activities:
redo_trace = redo_trace + (e,)
if len(do_trace) > 0:
do_log.update({do_trace: obj.data_structure[t]})
do_trace = tuple()
if len(redo_trace) > 0:
redo_logs = cls._append_trace_to_redo_log(redo_trace, redo_logs, redo)
do_log.update({do_trace: obj.data_structure[t]})
logs = [do_log]
logs.extend(redo_logs)
return list(map(lambda l: IMDataStructureUVCL(l), logs))
@classmethod
def _append_trace_to_redo_log(cls, redo_trace: Tuple, redo_logs: List[UVCL], redo_groups: List[Collection[Any]],
cardinality, parameters: Optional[Dict[str, Any]] = None) -> \
List[UVCL]:
activities = set(x for x in redo_trace)
inte = [(i, len(activities.intersection(redo_groups[i]))) for i in range(len(redo_groups))]
inte = sorted(inte, key=lambda x: (x[1], x[0]), reverse=True)
redo_logs[inte[0][0]].update({redo_trace: cardinality})
return redo_logs
class LoopCutDFG(LoopCut[IMDataStructureDFG]):
@classmethod
def project(cls, obj: IMDataStructureUVCL, groups: List[Collection[Any]], parameters: Optional[Dict[str, Any]] = None) -> List[IMDataStructureDFG]:
dfg = obj.dfg
dfgs = []
skippable = [False, False]
for gind, g in enumerate(groups):
dfn = DFG()
for (a, b) in dfg.graph:
if a in g and b in g:
dfn.graph[(a, b)] = dfg.graph[(a, b)]
if b in dfg.start_activities and a in dfg.end_activities:
skippable[1] = True
if gind == 0:
for a in dfg.start_activities:
if a in g:
dfn.start_activities[a] = dfg.start_activities[a]
else:
skippable[0] = True
for a in dfg.end_activities:
if a in g:
dfn.end_activities[a] = dfg.end_activities[a]
else:
skippable[1] = True
elif gind == 1:
for a in g:
dfn.start_activities[a] = 1
dfn.end_activities[a] = 1
dfgs.append(dfn)
return [IMDataStructureDFG(InductiveDFG(dfg=dfgs[i], skip=skippable[i])) for i in range(len(dfgs))]