Spaces:
Running
Running
''' | |
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). | |
PM4Py is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
PM4Py is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with PM4Py. If not, see <https://www.gnu.org/licenses/>. | |
''' | |
from pm4py.algo.conformance.tokenreplay.variants import token_replay | |
from pm4py.algo.evaluation.generalization.variants import token_based as generalization_token_based | |
from pm4py.algo.evaluation.precision.variants import etconformance_token as precision_token_based | |
from pm4py.algo.evaluation.replay_fitness.variants import token_replay as fitness_token_based | |
from pm4py.algo.evaluation.simplicity.variants import arc_degree as simplicity_arc_degree | |
from pm4py.objects import log as log_lib | |
from pm4py.objects.conversion.log import converter as log_conversion | |
from pm4py.util import constants | |
from enum import Enum | |
from pm4py.util import exec_utils | |
from typing import Optional, Dict, Any, Union | |
from pm4py.objects.log.obj import EventLog | |
from pm4py.objects.petri_net.obj import PetriNet, Marking | |
import pandas as pd | |
class Parameters(Enum): | |
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY | |
PARAM_FITNESS_WEIGHT = 'fitness_weight' | |
PARAM_PRECISION_WEIGHT = 'precision_weight' | |
PARAM_SIMPLICITY_WEIGHT = 'simplicity_weight' | |
PARAM_GENERALIZATION_WEIGHT = 'generalization_weight' | |
def apply(log: Union[EventLog, pd.DataFrame], net: PetriNet, initial_marking: Marking, final_marking: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Dict[str, float]: | |
""" | |
Calculates all metrics based on token-based replay and returns a unified dictionary | |
Parameters | |
----------- | |
log | |
Log | |
net | |
Petri net | |
initial_marking | |
Initial marking | |
final_marking | |
Final marking | |
parameters | |
Parameters | |
Returns | |
----------- | |
dictionary | |
Dictionary containing fitness, precision, generalization and simplicity; along with the average weight of | |
these metrics | |
""" | |
if parameters is None: | |
parameters = {} | |
log = log_conversion.apply(log, parameters, log_conversion.TO_EVENT_LOG) | |
activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, log_lib.util.xes.DEFAULT_NAME_KEY) | |
fitness_weight = exec_utils.get_param_value(Parameters.PARAM_FITNESS_WEIGHT, parameters, 0.25) | |
precision_weight = exec_utils.get_param_value(Parameters.PARAM_PRECISION_WEIGHT, parameters, 0.25) | |
simplicity_weight = exec_utils.get_param_value(Parameters.PARAM_SIMPLICITY_WEIGHT, parameters, 0.25) | |
generalization_weight = exec_utils.get_param_value(Parameters.PARAM_GENERALIZATION_WEIGHT, parameters, 0.25) | |
sum_of_weights = (fitness_weight + precision_weight + simplicity_weight + generalization_weight) | |
fitness_weight = fitness_weight / sum_of_weights | |
precision_weight = precision_weight / sum_of_weights | |
simplicity_weight = simplicity_weight / sum_of_weights | |
generalization_weight = generalization_weight / sum_of_weights | |
parameters_tr = {token_replay.Parameters.ACTIVITY_KEY: activity_key} | |
aligned_traces = token_replay.apply(log, net, initial_marking, final_marking, parameters=parameters_tr) | |
parameters = { | |
token_replay.Parameters.ACTIVITY_KEY: activity_key | |
} | |
fitness = fitness_token_based.evaluate(aligned_traces) | |
precision = precision_token_based.apply(log, net, initial_marking, final_marking, parameters=parameters) | |
generalization = generalization_token_based.get_generalization(net, aligned_traces) | |
simplicity = simplicity_arc_degree.apply(net) | |
metrics_average_weight = fitness_weight * fitness["log_fitness"] + precision_weight * precision \ | |
+ generalization_weight * generalization + simplicity_weight * simplicity | |
fscore = 0.0 | |
if (fitness['log_fitness'] + precision) > 0: | |
fscore = (2*fitness['log_fitness']*precision)/(fitness['log_fitness']+precision) | |
dictionary = { | |
"fitness": fitness, | |
"precision": precision, | |
"generalization": generalization, | |
"simplicity": simplicity, | |
"metricsAverageWeight": metrics_average_weight, | |
"fscore": fscore | |
} | |
return dictionary | |