kota
initial commit
e60e568
raw
history blame
13.5 kB
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.objects import log as log_lib
from pm4py.algo.evaluation.precision import utils as precision_utils
from pm4py.objects.petri_net.utils import align_utils as utils, check_soundness
from pm4py.objects.petri_net.utils.petri_utils import construct_trace_net
from pm4py.objects.petri_net.utils.synchronous_product import construct
from pm4py.statistics.start_activities.log.get import get_start_activities
from pm4py.objects.petri_net.utils.align_utils import get_visible_transitions_eventually_enabled_by_marking
from pm4py.util import exec_utils
from pm4py.util import xes_constants
import importlib.util
from enum import Enum
from pm4py.util import constants
from typing import Optional, Dict, Any, Union
from pm4py.objects.log.obj import EventLog, EventStream
from pm4py.objects.petri_net.obj import PetriNet, Marking
from pm4py.objects.conversion.log import converter as log_converter
import pandas as pd
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY
TOKEN_REPLAY_VARIANT = "token_replay_variant"
CLEANING_TOKEN_FLOOD = "cleaning_token_flood"
SHOW_PROGRESS_BAR = "show_progress_bar"
MULTIPROCESSING = "multiprocessing"
CORES = "cores"
def apply(log: Union[EventLog, EventStream, pd.DataFrame], net: PetriNet, marking: Marking, final_marking: Marking, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> float:
"""
Get Align-ET Conformance precision
Parameters
----------
log
Trace log
net
Petri net
marking
Initial marking
final_marking
Final marking
parameters
Parameters of the algorithm, including:
Parameters.ACTIVITY_KEY -> Activity key
"""
if parameters is None:
parameters = {}
debug_level = parameters["debug_level"] if "debug_level" in parameters else 0
activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, log_lib.util.xes.DEFAULT_NAME_KEY)
case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME)
# default value for precision, when no activated transitions (not even by looking at the initial marking) are found
precision = 1.0
sum_ee = 0
sum_at = 0
unfit = 0
if not check_soundness.check_easy_soundness_net_in_fin_marking(net, marking, final_marking):
raise Exception("trying to apply Align-ETConformance on a Petri net that is not a easy sound net!!")
if type(log) is not pd.DataFrame:
log = log_converter.apply(log, variant=log_converter.Variants.TO_EVENT_LOG, parameters=parameters)
prefixes, prefix_count = precision_utils.get_log_prefixes(log, activity_key=activity_key, case_id_key=case_id_key)
prefixes_keys = list(prefixes.keys())
fake_log = precision_utils.form_fake_log(prefixes_keys, activity_key=activity_key)
align_stop_marking = align_fake_log_stop_marking(fake_log, net, marking, final_marking, parameters=parameters)
all_markings = transform_markings_from_sync_to_original_net(align_stop_marking, net, parameters=parameters)
for i in range(len(prefixes)):
markings = all_markings[i]
if markings is not None:
log_transitions = set(prefixes[prefixes_keys[i]])
activated_transitions_labels = set()
for m in markings:
# add to the set of activated transitions in the model the activated transitions
# for each prefix
activated_transitions_labels = activated_transitions_labels.union(
x.label for x in utils.get_visible_transitions_eventually_enabled_by_marking(net, m) if
x.label is not None)
escaping_edges = activated_transitions_labels.difference(log_transitions)
sum_at += len(activated_transitions_labels) * prefix_count[prefixes_keys[i]]
sum_ee += len(escaping_edges) * prefix_count[prefixes_keys[i]]
if debug_level > 1:
print("")
print("prefix=", prefixes_keys[i])
print("log_transitions=", log_transitions)
print("activated_transitions=", activated_transitions_labels)
print("escaping_edges=", escaping_edges)
else:
unfit += prefix_count[prefixes_keys[i]]
if debug_level > 0:
print("\n")
print("overall unfit", unfit)
print("overall activated transitions", sum_at)
print("overall escaping edges", sum_ee)
# fix: also the empty prefix should be counted!
start_activities = set(get_start_activities(log, parameters=parameters))
trans_en_ini_marking = set([x.label for x in get_visible_transitions_eventually_enabled_by_marking(net, marking)])
diff = trans_en_ini_marking.difference(start_activities)
sum_at += len(log) * len(trans_en_ini_marking)
sum_ee += len(log) * len(diff)
# end fix
if sum_at > 0:
precision = 1 - float(sum_ee) / float(sum_at)
return precision
def transform_markings_from_sync_to_original_net(markings0, net, parameters=None):
"""
Transform the markings of the sync net (in which alignment stops) into markings of the original net
(in order to measure the precision)
Parameters
-------------
markings0
Markings on the sync net (expressed as place name with count)
net
Petri net
parameters
Parameters of the algorithm
Returns
-------------
markings
Markings of the original model (expressed as place with count)
"""
if parameters is None:
parameters = {}
places_corr = {p.name: p for p in net.places}
markings = []
for i in range(len(markings0)):
res_list = markings0[i]
# res_list shall be a list of markings.
# If it is None, then there is no correspondence markings
# in the original Petri net
if res_list is not None:
# saves all the markings reached by the optimal alignment
# as markings of the original net
markings.append([])
for j in range(len(res_list)):
res = res_list[j]
atm = Marking()
for pl, count in res.items():
if pl[0] == utils.SKIP:
atm[places_corr[pl[1]]] = count
markings[-1].append(atm)
else:
markings.append(None)
return markings
def align_fake_log_stop_marking(fake_log, net, marking, final_marking, parameters=None):
"""
Align the 'fake' log with all the prefixes in order to get the markings in which
the alignment stops
Parameters
-------------
fake_log
Fake log
net
Petri net
marking
Marking
final_marking
Final marking
parameters
Parameters of the algorithm
Returns
-------------
alignment
For each trace in the log, return the marking in which the alignment stops (expressed as place name with count)
"""
if parameters is None:
parameters = {}
show_progress_bar = exec_utils.get_param_value(Parameters.SHOW_PROGRESS_BAR, parameters, constants.SHOW_PROGRESS_BAR)
multiprocessing = exec_utils.get_param_value(Parameters.MULTIPROCESSING, parameters, constants.ENABLE_MULTIPROCESSING_DEFAULT)
progress = None
if importlib.util.find_spec("tqdm") and show_progress_bar and len(fake_log) > 1:
from tqdm.auto import tqdm
progress = tqdm(total=len(fake_log), desc="computing precision with alignments, completed variants :: ")
if multiprocessing:
align_intermediate_result = __align_log_with_multiprocessing_stop_marking(fake_log, net, marking, final_marking,
progress, parameters=parameters)
else:
align_intermediate_result = __align_log_wo_multiprocessing_stop_marking(fake_log, net, marking, final_marking,
progress, parameters=parameters)
align_result = []
for i in range(len(align_intermediate_result)):
res = align_intermediate_result[i]
if res is not None:
align_result.append([])
for mark in res:
res2 = {}
for pl in mark:
# transforms the markings for easier correspondence at the end
# (distributed engine friendly!)
res2[(pl.name[0], pl.name[1])] = mark[pl]
align_result[-1].append(res2)
else:
# if there is no path from the initial marking
# replaying the given prefix, then add None
align_result.append(None)
# gracefully close progress bar
if progress is not None:
progress.close()
del progress
return align_result
def __align_log_wo_multiprocessing_stop_marking(fake_log, net, marking, final_marking, progress, parameters=None):
align_intermediate_result = []
for i in range(len(fake_log)):
res = __align_trace_stop_marking(fake_log[i], net, marking, final_marking, parameters=parameters)
align_intermediate_result.append(res)
if progress is not None:
progress.update()
return align_intermediate_result
def __align_log_with_multiprocessing_stop_marking(fake_log, net, marking, final_marking, progress, parameters=None):
if parameters is not None:
parameters = {}
import multiprocessing
from concurrent.futures import ProcessPoolExecutor
num_cores = exec_utils.get_param_value(Parameters.CORES, parameters, multiprocessing.cpu_count() - 2)
align_intermediate_result = []
with ProcessPoolExecutor(max_workers=num_cores) as executor:
futures = []
for i in range(len(fake_log)):
futures.append(executor.submit(__align_trace_stop_marking, fake_log[i], net, marking, final_marking, parameters))
if progress is not None:
alignments_ready = 0
while alignments_ready != len(futures):
current = 0
for index, variant in enumerate(futures):
current = current + 1 if futures[index].done() else current
if current > alignments_ready:
for i in range(0, current - alignments_ready):
progress.update()
alignments_ready = current
for index, variant in enumerate(futures):
align_intermediate_result.append(futures[index].result())
return align_intermediate_result
def __align_trace_stop_marking(trace, net, marking, final_marking, parameters=None):
sync_net, sync_initial_marking, sync_final_marking = build_sync_net(trace, net, marking, final_marking,
parameters=parameters)
stop_marking = Marking()
for pl, count in sync_final_marking.items():
if pl.name[1] == utils.SKIP:
stop_marking[pl] = count
cost_function = utils.construct_standard_cost_function(sync_net, utils.SKIP)
# perform the alignment of the prefix
res = precision_utils.__search(sync_net, sync_initial_marking, sync_final_marking, stop_marking, cost_function,
utils.SKIP)
return res
def build_sync_net(trace, petri_net, initial_marking, final_marking, parameters=None):
"""
Build the sync product net between the Petri net and the trace prefix
Parameters
---------------
trace
Trace prefix
petri_net
Petri net
initial_marking
Initial marking
final_marking
Final marking
parameters
Possible parameters of the algorithm
"""
if parameters is None:
parameters = {}
activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY)
trace_net, trace_im, trace_fm = construct_trace_net(trace, activity_key=activity_key)
sync_prod, sync_initial_marking, sync_final_marking = construct(trace_net, trace_im,
trace_fm, petri_net,
initial_marking,
final_marking,
utils.SKIP)
return sync_prod, sync_initial_marking, sync_final_marking