kota
initial commit
e60e568
raw
history blame
5.2 kB
'''
This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de).
PM4Py is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
PM4Py is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PM4Py. If not, see <https://www.gnu.org/licenses/>.
'''
from pm4py.algo.conformance.tokenreplay.variants import token_replay
from pm4py.statistics.variants.log import get as variants_module
from pm4py.objects.petri_net.obj import PetriNet
from pm4py.objects.random_variables.random_variable import RandomVariable
from pm4py.objects.petri_net.utils import performance_map
from pm4py.util import exec_utils, xes_constants
from pm4py.algo.conformance.tokenreplay import algorithm as executor
from enum import Enum
from pm4py.util import constants
from copy import copy
class Parameters(Enum):
ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY
TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY
TOKEN_REPLAY_VARIANT = "token_replay_variant"
PARAM_NUM_SIMULATIONS = "num_simulations"
PARAM_FORCE_DISTRIBUTION = "force_distribution"
PARAM_ENABLE_DIAGNOSTICS = "enable_diagnostics"
PARAM_DIAGN_INTERVAL = "diagn_interval"
PARAM_CASE_ARRIVAL_RATIO = "case_arrival_ratio"
PARAM_PROVIDED_SMAP = "provided_stochastic_map"
PARAM_MAP_RESOURCES_PER_PLACE = "map_resources_per_place"
PARAM_DEFAULT_NUM_RESOURCES_PER_PLACE = "default_num_resources_per_place"
PARAM_SMALL_SCALE_FACTOR = "small_scale_factor"
PARAM_MAX_THREAD_EXECUTION_TIME = "max_thread_exec_time"
def get_map_from_log_and_net(log, net, initial_marking, final_marking, force_distribution=None, parameters=None):
"""
Get transition stochastic distribution map given the log and the Petri net
Parameters
-----------
log
Event log
net
Petri net
initial_marking
Initial marking of the Petri net
final_marking
Final marking of the Petri net
force_distribution
If provided, distribution to force usage (e.g. EXPONENTIAL)
parameters
Parameters of the algorithm, including:
Parameters.ACTIVITY_KEY -> activity name
Parameters.TIMESTAMP_KEY -> timestamp key
Returns
-----------
stochastic_map
Map that to each transition associates a random variable
"""
stochastic_map = {}
if parameters is None:
parameters = {}
token_replay_variant = exec_utils.get_param_value(Parameters.TOKEN_REPLAY_VARIANT, parameters,
executor.Variants.TOKEN_REPLAY)
activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes_constants.DEFAULT_NAME_KEY)
timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters,
xes_constants.DEFAULT_TIMESTAMP_KEY)
parameters_variants = {constants.PARAMETER_CONSTANT_ACTIVITY_KEY: activity_key}
variants_idx = variants_module.get_variants_from_log_trace_idx(log, parameters=parameters_variants)
variants = variants_module.convert_variants_trace_idx_to_trace_obj(log, variants_idx)
parameters_tr = copy(parameters)
parameters_tr[token_replay.Parameters.ACTIVITY_KEY] = activity_key
parameters_tr[token_replay.Parameters.VARIANTS] = variants
parameters_ses = copy(parameters)
# do the replay
aligned_traces = executor.apply(log, net, initial_marking, final_marking, variant=token_replay_variant,
parameters=parameters_tr)
element_statistics = performance_map.single_element_statistics(log, net, initial_marking,
aligned_traces, variants_idx,
activity_key=activity_key,
timestamp_key=timestamp_key,
parameters=parameters_ses)
for el in element_statistics:
if type(el) is PetriNet.Transition and "performance" in element_statistics[el]:
values = element_statistics[el]["performance"]
rand = RandomVariable()
rand.calculate_parameters(values, force_distribution=force_distribution)
no_of_times_enabled = element_statistics[el]['no_of_times_enabled']
no_of_times_activated = element_statistics[el]['no_of_times_activated']
if no_of_times_enabled > 0:
rand.set_weight(float(no_of_times_activated) / float(no_of_times_enabled))
else:
rand.set_weight(0.0)
stochastic_map[el] = rand
return stochastic_map