process_mining / model.py
kota
initial commit
1089f07
raw
history blame
7.24 kB
import os
from typing import List, Optional, Tuple, Any
from collections import OrderedDict
import pandas as pd
from loguru import logger
import pm4py
import plotly.graph_objects as go
import networkx as nx
import matplotlib.pyplot as plt
from PIL import Image
from pydantic import BaseModel
class ProcessMap(BaseModel):
net: Any
start_activities: List | None
end_activities: List | None
img: Any | None
def dfg2networkx( dfg, start, end):
"""Dfg to networkx
Argument
dfg: a list of dict of edges from directly-follow-graph
start: a dict of start activities
end: a dict of end activities
Return
nx: networkx graph object
"""
PROCESS_START = '#Start#'
PROCESS_END = '#End#'
nodes = { PROCESS_START: 0, PROCESS_END: 1}
node_idx = 2
for activity in start:
assert activity not in nodes, f"#ERROR: {activity} exists"
nodes[activity] = node_idx
node_idx += 1
for activity in end:
assert activity not in nodes, f"#ERROR: {activity} exists"
nodes[activity] = node_idx
node_idx += 1
for node in dfg:
left_activity = node[0]
if left_activity not in nodes:
nodes[left_activity] = node_idx
node_idx +=1
right_activity = node[1]
if right_activity not in nodes:
nodes[right_activity] = node_idx
node_idx +=1
nodes = list(nodes.keys())
edges = []
for activity in start:
from_id = str(PROCESS_START)
to_id = str(activity)
edges.append( ( PROCESS_START, activity) )
for activity in end:
from_id = str(activity)
to_id = str(PROCESS_END)
edges.append( ( activity, PROCESS_END) )
for transition in dfg:
edges.append( ( transition[0], transition[1]) )
nx_graph = nx.DiGraph()
nx_graph.add_nodes_from( nodes)
nx_graph.add_edges_from(edges)
return nx_graph
def discover_process_map_variants( df, top_k: int = 0, type: str = 'dfg'):
"""Discover process map from data frame (raw event log)
Argument
df: a pandas dataframe
top_k: top k variants
type: dfg or petri
Return
dfg, start_activities, end_activities
"""
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
if top_k > 0:
event_log = pm4py.filter_variants_top_k( event_log, k = top_k)
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
return dfg, start_activities, end_activities
def discover_process_map_activities_connections( df, activity_rank: int = 0, connection_rank: int = 0, state: dict = {}, type: str = 'dfg'):
"""Discover process map from data frame (raw event log)
Argument
df: a pandas dataframe
top_k: top k variants
type: dfg or petri
Return
dfg, start_activities, end_activities
"""
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
full_dfg, _, __ = pm4py.discover_dfg(event_log)
ranked_connections = OrderedDict(sorted(full_dfg.items(), key=lambda item: item[1], reverse=True))
if activity_rank > 0:
pass
if connection_rank > 0:
top_variant_connections = state.get('top_variant_connections', [])
filtered_connections = list(ranked_connections.keys())[ : (connection_rank+ len(ranked_connections))]
else:
filtered_connections = list(ranked_connections.keys())
event_log = pm4py.filter_directly_follows_relation( event_log, relations = filtered_connections)
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
return dfg, start_activities, end_activities
def discover_process_map( df: pd.DataFrame, type: str = 'dfg'):
"""
"""
event_log = pm4py.format_dataframe( df, case_id='case_id', activity_key='activity', timestamp_key='timestamp')
if type=='dfg':
dfg, start_activities, end_activities = pm4py.discover_dfg(event_log)
pm4py.view_dfg(dfg, start_activities=start_activities, end_activities=end_activities)
return dfg, start_activities, end_activities
elif type=='petrinet':
net, im, fm = pm4py.discover_petri_net_inductive(event_log)
pm4py.view_petri_net( petri_net=net, initial_marking=im, final_marking=fm)
file_path = 'output/petri_net.png'
pm4py.save_vis_petri_net( net, im, fm, file_path)
img = Image.open(file_path)
return net, img
elif type=='bpmn':
net = pm4py.discover_bpmn_inductive(event_log)
pm4py.view_bpmn(net, format='png')
file_path = 'output/bpmn.png'
pm4py.save_vis_bpmn( net, file_path)
img = Image.open(file_path)
return net, img
else:
raise Exception(f"Invalid type: {type}")
def view_networkx( nx_graph, layout):
"""
Argument
nx_graph
Return
graph object
fig.update_xaxes(showticklabels=False)
fig.update_yaxes(showticklabels=False)
"""
# Create node scatter plot
node_trace = go.Scatter(
x=[layout[n][0] for n in nx_graph.nodes],
y=[layout[n][1] for n in nx_graph.nodes],
text=list(nx_graph.nodes),
mode='markers+text',
hovertext = [n for n in nx_graph.nodes],
textposition='top center',
marker=dict(size=5, color='LightSkyBlue', line=dict(width=2))
)
# Create edge lines
edge_trace = go.Scatter(
x=(),
y=(),
line=dict(width=1.5, color='#888'),
hoverinfo='none',
mode='lines'
)
# Add arrows for directed edges
annotations = []
for edge in nx_graph.edges:
x0, y0 = layout[edge[0]]
x1, y1 = layout[edge[1]]
edge_trace['x'] += (x0, x1, None)
edge_trace['y'] += (y0, y1, None)
# Calculate direction of the arrow
annotations.append(
dict(
ax=x0,
ay=y0,
axref='x',
ayref='y',
x=x1,
y=y1,
xref='x',
yref='y',
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor='Gray'
)
)
# Draw the figure
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=0),
annotations=annotations,
xaxis=dict(showgrid=False, zeroline=False),
yaxis=dict(showgrid=False, zeroline=False)
))
fig = fig.update_xaxes(showticklabels=False)
fig = fig.update_yaxes(showticklabels=False)
return fig
def view_process_map( nx_graph, process_type: str = 'dfg', layout_type: str = 'sfdp'):
"""
"""
layout = nx.nx_agraph.graphviz_layout( nx_graph, prog=layout_type)
fig = view_networkx(nx_graph, layout)
return fig