Spaces:
Sleeping
Sleeping
import os | |
import unittest | |
from pm4py.algo.conformance.alignments.petri_net import algorithm as align_alg | |
from pm4py.algo.conformance.tokenreplay import algorithm as tr_alg | |
from pm4py.algo.discovery.alpha import algorithm as alpha_miner | |
from pm4py.algo.discovery.dfg import algorithm as dfg_mining | |
from pm4py.algo.discovery.heuristics import algorithm as heuristics_miner | |
from pm4py.algo.discovery.inductive import algorithm as inductive_miner | |
from pm4py.algo.discovery.transition_system import algorithm as ts_disc | |
from pm4py.algo.evaluation import algorithm as eval_alg | |
from pm4py.algo.evaluation.generalization import algorithm as generalization | |
from pm4py.algo.evaluation.precision import algorithm as precision_evaluator | |
from pm4py.algo.evaluation.replay_fitness import algorithm as rp_fit | |
from pm4py.algo.evaluation.simplicity import algorithm as simplicity | |
from pm4py.objects.conversion.log import converter as log_conversion | |
from pm4py.objects.log.exporter.xes import exporter as xes_exporter | |
from pm4py.objects.log.importer.xes import importer as xes_importer | |
from pm4py.objects.log.util import dataframe_utils | |
from pm4py.util import constants, pandas_utils | |
from pm4py.objects.conversion.process_tree import converter as process_tree_converter | |
class MainFactoriesTest(unittest.TestCase): | |
def test_nonstandard_exporter(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
xes_exporter.apply(log, os.path.join("test_output_data", "running-example.xes"), | |
variant=xes_exporter.Variants.LINE_BY_LINE) | |
os.remove(os.path.join("test_output_data", "running-example.xes")) | |
def test_alphaminer_log(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
net, im, fm = alpha_miner.apply(log) | |
aligned_traces_tr = tr_alg.apply(log, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(log, net, im, fm) | |
evaluation = eval_alg.apply(log, net, im, fm) | |
fitness = rp_fit.apply(log, net, im, fm) | |
precision = precision_evaluator.apply(log, net, im, fm) | |
gen = generalization.apply(log, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_memory_efficient_iterparse(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes"), | |
variant=xes_importer.Variants.ITERPARSE_MEM_COMPRESSED) | |
def test_alphaminer_stream(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) | |
net, im, fm = alpha_miner.apply(stream) | |
aligned_traces_tr = tr_alg.apply(stream, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(stream, net, im, fm) | |
evaluation = eval_alg.apply(stream, net, im, fm) | |
fitness = rp_fit.apply(stream, net, im, fm) | |
precision = precision_evaluator.apply(stream, net, im, fm) | |
gen = generalization.apply(stream, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_alphaminer_df(self): | |
log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
net, im, fm = alpha_miner.apply(log) | |
aligned_traces_tr = tr_alg.apply(log, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(log, net, im, fm) | |
evaluation = eval_alg.apply(log, net, im, fm) | |
fitness = rp_fit.apply(log, net, im, fm) | |
precision = precision_evaluator.apply(log, net, im, fm) | |
gen = generalization.apply(log, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_inductiveminer_log(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
process_tree = inductive_miner.apply(log) | |
net, im, fm = process_tree_converter.apply(process_tree) | |
aligned_traces_tr = tr_alg.apply(log, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(log, net, im, fm) | |
evaluation = eval_alg.apply(log, net, im, fm) | |
fitness = rp_fit.apply(log, net, im, fm) | |
precision = precision_evaluator.apply(log, net, im, fm) | |
gen = generalization.apply(log, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_inductiveminer_df(self): | |
log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
process_tree = inductive_miner.apply(log) | |
net, im, fm = process_tree_converter.apply(process_tree) | |
aligned_traces_tr = tr_alg.apply(log, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(log, net, im, fm) | |
evaluation = eval_alg.apply(log, net, im, fm) | |
fitness = rp_fit.apply(log, net, im, fm) | |
precision = precision_evaluator.apply(log, net, im, fm) | |
gen = generalization.apply(log, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_heu_log(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
net, im, fm = heuristics_miner.apply(log) | |
aligned_traces_tr = tr_alg.apply(log, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(log, net, im, fm) | |
evaluation = eval_alg.apply(log, net, im, fm) | |
fitness = rp_fit.apply(log, net, im, fm) | |
precision = precision_evaluator.apply(log, net, im, fm) | |
gen = generalization.apply(log, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_heu_stream(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) | |
net, im, fm = heuristics_miner.apply(stream) | |
aligned_traces_tr = tr_alg.apply(stream, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(stream, net, im, fm) | |
evaluation = eval_alg.apply(stream, net, im, fm) | |
fitness = rp_fit.apply(stream, net, im, fm) | |
precision = precision_evaluator.apply(stream, net, im, fm) | |
gen = generalization.apply(stream, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_heu_df(self): | |
log = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
log = dataframe_utils.convert_timestamp_columns_in_df(log, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
net, im, fm = heuristics_miner.apply(log) | |
aligned_traces_tr = tr_alg.apply(log, net, im, fm) | |
aligned_traces_alignments = align_alg.apply(log, net, im, fm) | |
evaluation = eval_alg.apply(log, net, im, fm) | |
fitness = rp_fit.apply(log, net, im, fm) | |
precision = precision_evaluator.apply(log, net, im, fm) | |
gen = generalization.apply(log, net, im, fm) | |
sim = simplicity.apply(net) | |
def test_dfg_log(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
dfg = dfg_mining.apply(log) | |
def test_dfg_stream(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) | |
dfg = dfg_mining.apply(stream) | |
def test_dfg_df(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
dfg = dfg_mining.apply(df) | |
def test_ts_log(self): | |
log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
ts = ts_disc.apply(log) | |
def test_ts_stream(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) | |
ts = ts_disc.apply(stream) | |
def test_ts_df(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
ts = ts_disc.apply(df) | |
def test_csvimp_xesexp(self): | |
df = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
df = dataframe_utils.convert_timestamp_columns_in_df(df, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
log0 = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) | |
log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG) | |
stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM) | |
df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME) | |
xes_exporter.apply(log, "ru.xes") | |
xes_exporter.apply(stream, "ru.xes") | |
xes_exporter.apply(df, "ru.xes") | |
os.remove('ru.xes') | |
def test_xesimp_xesexp(self): | |
log0 = xes_importer.apply(os.path.join("input_data", "running-example.xes")) | |
log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG) | |
stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM) | |
df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME) | |
xes_exporter.apply(log, "ru.xes") | |
xes_exporter.apply(stream, "ru.xes") | |
xes_exporter.apply(df, "ru.xes") | |
os.remove('ru.xes') | |
def test_pdimp_xesexp(self): | |
log0 = pandas_utils.read_csv(os.path.join("input_data", "running-example.csv")) | |
log0 = dataframe_utils.convert_timestamp_columns_in_df(log0, timest_format=constants.DEFAULT_TIMESTAMP_PARSE_FORMAT) | |
log = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_LOG) | |
stream = log_conversion.apply(log0, variant=log_conversion.TO_EVENT_STREAM) | |
df = log_conversion.apply(log0, variant=log_conversion.TO_DATA_FRAME) | |
xes_exporter.apply(log, "ru.xes") | |
xes_exporter.apply(stream, "ru.xes") | |
xes_exporter.apply(df, "ru.xes") | |
os.remove('ru.xes') | |
if __name__ == "__main__": | |
unittest.main() | |