File size: 6,624 Bytes
07d2942
948e91c
60274d1
07d2942
 
 
 
60274d1
07d2942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60274d1
948e91c
60274d1
07d2942
 
60274d1
07d2942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import re
import json
import itertools
import math
import joblib
from typing import List

import pandas as pd
from loguru import logger


def parse_json_garbage(s, start="{", end="}"):
    """Parse JSON string without comments
    Argument
        s: str
        start: str
        end: str
    Return
        json_obj: dict
    """
    s = s[next(idx for idx, c in enumerate(s) if c in start):]
    # print(f"fix head -> {s}")
    s = s[:next(idx for idx, c in enumerate(s) if c in end)+1]
    # print(f"fix tail -> {s}")
    if s.startswith("json"):
        s = s[4:]
    try:
        return json.loads(re.sub("[//#].*","",s,flags=re.MULTILINE))
    except json.JSONDecodeError as e:
        logger.warning(f"Error parsing JSON (trying another regex...): {e}")
        return json.loads(re.sub("^[//#].*","",s,flags=re.MULTILINE))
    

def merge_results( results: list, dataframe_columns: list, list_columns: list):
    """
    Argument
        results: a list of dataframes
        dataframe_columns: list
        list_columns: list
    Return 
        merged_results: dict
    """
    assert len(results) > 0, "No results to merge"
    merged_results = {}
    for result in results:
        for key in dataframe_columns:
            mer_res = pd.concat([ r[key] for r in results], ignore_index=True)
            merged_results[key] = mer_res

        for key in list_columns:
            mer_res = list(itertools.chain(*[ r[key] for r in results]))
            merged_results[key] = mer_res

    return merged_results


def split_dataframe( df: pd.DataFrame, n_processes: int = 4) -> list:
    """
    """
    n = df.shape[0]
    n_per_process = max( math.ceil(n / n_processes), 1)
    return [ df.iloc[i:i+n_per_process] for i in range(0, n, n_per_process)]


def combine_results( results: pd.DataFrame, combined_results_path: str, src_column: str = 'classified_category', tgt_column: str = 'category', strategy: str = 'replace'):
    """
    Argument
        classified_results_df: dataframe
        combined_results_path
        src_column: str
        strategy: str, 'replace' or 'patch'
    Return
        combined_results: dataframe
    """
    if not os.path.exists(combined_results_path):
        combined_results = results.copy()
        if strategy == 'replace':
            condition = (combined_results[tgt_column]=='') | (combined_results[src_column]!=combined_results[tgt_column])
            combined_results.loc[ condition, tgt_column] = combined_results[condition][src_column].values
        elif strategy == 'patch':
            condition = (combined_results[tgt_column]=='')
            combined_results.loc[ condition, tgt_column] = combined_results[condition][src_column].values
        else:
            raise Exception(f"Strategy {strategy} not implemented")
        with open( combined_results_path, "wb") as f:
            joblib.dump( combined_results, f)
    else:
        with open( combined_results_path, "rb") as f:
            combined_results = joblib.load(f)
    return combined_results


def split_dict( information: dict | List[dict], keys1: List[str], keys2: List[str]):
    """[ { key1: value1, key2: value2}, { key1: value1, key2: value2}] -> [ {key1: value1}, {key1: value1}], [{key2: value2, key2: value2}]
    Argument
        information: dict | List[dict], dim -> N
        keys1: List[str], dim -> K1
        keys2: List[str], dim -> K2
    Example:
        >> split_dict( [ {"a": 1, "b":2, "c": 3}, {"a": 1, "b":2, "c": 3}, {"a": 1, "b":2, "c": 3}], ['a','b'], ['c']) 
        >> ( [{'a': 1, 'b': 2}, {'a': 1, 'b': 2}, {'a': 1, 'b': 2}], [{'c': 3}, {'c': 3}, {'c': 3}] )
    """
    assert len(keys1)>0 and len(keys2)>0
    results1, results2 = [], []
    if isinstance( information, dict):
        information = [ information]
    for info in information: # N
        split_results1 = {} # K1
        for key in keys1:
            if key in info:
                split_results1[key] = info[key]
            else:
                split_results1[key] = None
        results1.append( split_results1)
        split_results2 = {} # K2
        for key in keys2:
            if key in info:
                split_results2[key] = info[key]
            else:
                split_results2[key] = None
        results2.append( split_results2)
        # results.append( [ split_results1, split_results2])
    assert len(results1)==len(results2)
    if len(results1)==1:
        return results1[0], results2[0]
    return results1, results2


def format_df( df: pd.DataFrame, input_column: str = 'evidence', output_column: str = 'formatted_evidence', format_func: str = lambda x: x):
    """
    Argument
        df: `evidence`, `result`
        input_column: 
        output_column:
        format_func:
    Return
        formatted_df: dataframe of `formatted_evidence`
    """
    formatted_df = df.copy()
    formatted_df[output_column] = formatted_df[input_column].apply(format_func)
    return formatted_df


def clean_quotes( text: str):
    """
    """
    return text.strip().replace("\u3000","").replace("\r","").replace("\"", "").replace("'", "")


def compose_query( address, name, with_index: bool = True, exclude: str = "-inurl:twincn.com -inurl:findcompany.com.tw -inurl:iyp.com.tw -inurl:twypage.com -inurl:alltwcompany.com -inurl:zhupiter.com -inurl:twinc.com.tw", use_exclude: bool = True):
    """
    Argumemnt
        # d: series with d[1]: 地址, d[4]: 營業人名稱 #
        address: str
        name: str
        with_index: bool
    Return
        query: `縣市` `營業人名稱`
    """
    # if with_index:  # .itertuples()
    #     query = f"{d[1][:3]} {d[4]}"
    # else:
    #     query = f"{d[0][:3]} {d[3]}"
    if use_exclude:
        query = f"{address[:3]} {name} {exclude}" 
    else:
        query = f"{address[:3]} {name}" 
    return query


def reverse_category2supercategory(category2supercategory):
    """
    Argument
        category2supercategory: dict
    Return
        supercategory2category: dict
    """
    supercategory2category = {}
    for key, value in category2supercategory.items():
        if value not in supercategory2category:
            supercategory2category[value] = [key]
        else:
            supercategory2category[value].append(key)
    return supercategory2category

def concat_df( list_df: List[pd.DataFrame], axis: int = 0):
    """
    Argument
        list_df: List[pd.DataFrame]
        axis: int
    Return
        df: pd.DataFrame
    """
    assert len(list_df)>0, "Empty list of dataframes"
    if len(list_df)==1:
        return list_df[0]
    return pd.concat( list_df, axis=axis)