Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
# pyre-unsafe | |
""" | |
Script to visualize a previously trained model. Example call: | |
pytorch3d_implicitron_visualizer \ | |
exp_dir='./exps/checkpoint_dir' visdom_show_preds=True visdom_port=8097 \ | |
n_eval_cameras=40 render_size="[64,64]" video_size="[256,256]" | |
""" | |
import os | |
import sys | |
from typing import Optional, Tuple | |
import numpy as np | |
import torch | |
from omegaconf import DictConfig, OmegaConf | |
from pytorch3d.implicitron.models.visualization.render_flyaround import render_flyaround | |
from pytorch3d.implicitron.tools.config import enable_get_default_args, get_default_args | |
from .experiment import Experiment | |
def visualize_reconstruction( | |
exp_dir: str = "", | |
restrict_sequence_name: Optional[str] = None, | |
output_directory: Optional[str] = None, | |
render_size: Tuple[int, int] = (512, 512), | |
video_size: Optional[Tuple[int, int]] = None, | |
split: str = "train", | |
n_source_views: int = 9, | |
n_eval_cameras: int = 40, | |
visdom_show_preds: bool = False, | |
visdom_server: str = "http://127.0.0.1", | |
visdom_port: int = 8097, | |
visdom_env: Optional[str] = None, | |
**render_flyaround_kwargs, | |
) -> None: | |
""" | |
Given an `exp_dir` containing a trained Implicitron model, generates videos consisting | |
of renderes of sequences from the dataset used to train and evaluate the trained | |
Implicitron model. | |
Args: | |
exp_dir: Implicitron experiment directory. | |
restrict_sequence_name: If set, defines the list of sequences to visualize. | |
output_directory: If set, defines a custom directory to output visualizations to. | |
render_size: The size (HxW) of the generated renders. | |
video_size: The size (HxW) of the output video. | |
split: The dataset split to use for visualization. | |
Can be "train" / "val" / "test". | |
n_source_views: The number of source views added to each rendered batch. These | |
views are required inputs for models such as NeRFormer / NeRF-WCE. | |
n_eval_cameras: The number of cameras each fly-around trajectory. | |
visdom_show_preds: If `True`, outputs visualizations to visdom. | |
visdom_server: The address of the visdom server. | |
visdom_port: The port of the visdom server. | |
visdom_env: If set, defines a custom name for the visdom environment. | |
render_flyaround_kwargs: Keyword arguments passed to the invoked `render_flyaround` | |
function (see `pytorch3d.implicitron.models.visualization.render_flyaround`). | |
""" | |
# In case an output directory is specified use it. If no output_directory | |
# is specified create a vis folder inside the experiment directory | |
if output_directory is None: | |
output_directory = os.path.join(exp_dir, "vis") | |
os.makedirs(output_directory, exist_ok=True) | |
# Set the random seeds | |
torch.manual_seed(0) | |
np.random.seed(0) | |
# Get the config from the experiment_directory, | |
# and overwrite relevant fields | |
config = _get_config_from_experiment_directory(exp_dir) | |
config.exp_dir = exp_dir | |
# important so that the CO3D dataset gets loaded in full | |
data_source_args = config.data_source_ImplicitronDataSource_args | |
if "dataset_map_provider_JsonIndexDatasetMapProvider_args" in data_source_args: | |
dataset_args = ( | |
data_source_args.dataset_map_provider_JsonIndexDatasetMapProvider_args | |
) | |
dataset_args.test_on_train = False | |
if restrict_sequence_name is not None: | |
dataset_args.restrict_sequence_name = restrict_sequence_name | |
# Set the rendering image size | |
model_factory_args = config.model_factory_ImplicitronModelFactory_args | |
model_factory_args.force_resume = True | |
model_args = model_factory_args.model_GenericModel_args | |
model_args.render_image_width = render_size[0] | |
model_args.render_image_height = render_size[1] | |
# Load the previously trained model | |
experiment = Experiment(**config) | |
model = experiment.model_factory(exp_dir=exp_dir) | |
device = torch.device("cuda") | |
model.to(device) | |
model.eval() | |
# Setup the dataset | |
data_source = experiment.data_source | |
dataset_map, _ = data_source.get_datasets_and_dataloaders() | |
dataset = dataset_map[split] | |
if dataset is None: | |
raise ValueError(f"{split} dataset not provided") | |
if visdom_env is None: | |
visdom_env = ( | |
"visualizer_" + config.training_loop_ImplicitronTrainingLoop_args.visdom_env | |
) | |
# iterate over the sequences in the dataset | |
for sequence_name in dataset.sequence_names(): | |
with torch.no_grad(): | |
render_kwargs = { | |
"dataset": dataset, | |
"sequence_name": sequence_name, | |
"model": model, | |
"output_video_path": os.path.join(output_directory, "video"), | |
"n_source_views": n_source_views, | |
"visdom_show_preds": visdom_show_preds, | |
"n_flyaround_poses": n_eval_cameras, | |
"visdom_server": visdom_server, | |
"visdom_port": visdom_port, | |
"visdom_environment": visdom_env, | |
"video_resize": video_size, | |
"device": device, | |
**render_flyaround_kwargs, | |
} | |
render_flyaround(**render_kwargs) | |
enable_get_default_args(visualize_reconstruction) | |
def _get_config_from_experiment_directory(experiment_directory) -> DictConfig: | |
cfg_file = os.path.join(experiment_directory, "expconfig.yaml") | |
config = OmegaConf.load(cfg_file) | |
# pyre-ignore[7] | |
return OmegaConf.merge(get_default_args(Experiment), config) | |
def main(argv=sys.argv) -> None: | |
# automatically parses arguments of visualize_reconstruction | |
cfg = OmegaConf.create(get_default_args(visualize_reconstruction)) | |
cfg.update(OmegaConf.from_cli(argv)) | |
with torch.no_grad(): | |
visualize_reconstruction(**cfg) | |
if __name__ == "__main__": | |
main() | |