Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import numpy as np | |
import torch | |
from pytorch3d.implicitron.dataset.utils import ( | |
bbox_xywh_to_xyxy, | |
bbox_xyxy_to_xywh, | |
clamp_box_to_image_bounds_and_round, | |
crop_around_box, | |
get_1d_bounds, | |
get_bbox_from_mask, | |
get_clamp_bbox, | |
rescale_bbox, | |
resize_image, | |
) | |
from tests.common_testing import TestCaseMixin | |
class TestBBox(TestCaseMixin, unittest.TestCase): | |
def setUp(self): | |
torch.manual_seed(42) | |
def test_bbox_conversion(self): | |
bbox_xywh_list = torch.LongTensor( | |
[ | |
[0, 0, 10, 20], | |
[10, 20, 5, 1], | |
[10, 20, 1, 1], | |
[5, 4, 0, 1], | |
] | |
) | |
for bbox_xywh in bbox_xywh_list: | |
bbox_xyxy = bbox_xywh_to_xyxy(bbox_xywh) | |
bbox_xywh_ = bbox_xyxy_to_xywh(bbox_xyxy) | |
bbox_xyxy_ = bbox_xywh_to_xyxy(bbox_xywh_) | |
self.assertClose(bbox_xywh_, bbox_xywh) | |
self.assertClose(bbox_xyxy, bbox_xyxy_) | |
def test_compare_to_expected(self): | |
bbox_xywh_to_xyxy_expected = torch.LongTensor( | |
[ | |
[[0, 0, 10, 20], [0, 0, 10, 20]], | |
[[10, 20, 5, 1], [10, 20, 15, 21]], | |
[[10, 20, 1, 1], [10, 20, 11, 21]], | |
[[5, 4, 0, 1], [5, 4, 5, 5]], | |
] | |
) | |
for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_expected: | |
self.assertClose(bbox_xywh_to_xyxy(bbox_xywh), bbox_xyxy_expected) | |
self.assertClose(bbox_xyxy_to_xywh(bbox_xyxy_expected), bbox_xywh) | |
clamp_amnt = 3 | |
bbox_xywh_to_xyxy_clamped_expected = torch.LongTensor( | |
[ | |
[[0, 0, 10, 20], [0, 0, 10, 20]], | |
[[10, 20, 5, 1], [10, 20, 15, 20 + clamp_amnt]], | |
[[10, 20, 1, 1], [10, 20, 10 + clamp_amnt, 20 + clamp_amnt]], | |
[[5, 4, 0, 1], [5, 4, 5 + clamp_amnt, 4 + clamp_amnt]], | |
] | |
) | |
for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_clamped_expected: | |
self.assertClose( | |
bbox_xywh_to_xyxy(bbox_xywh, clamp_size=clamp_amnt), | |
bbox_xyxy_expected, | |
) | |
def test_mask_to_bbox(self): | |
mask = np.array( | |
[ | |
[0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 0, 0], | |
[0, 0, 0, 0, 0, 0], | |
] | |
).astype(np.float32) | |
expected_bbox_xywh = [2, 1, 2, 1] | |
bbox_xywh = get_bbox_from_mask(mask, 0.5) | |
self.assertClose(bbox_xywh, expected_bbox_xywh) | |
def test_crop_around_box(self): | |
bbox = torch.LongTensor([0, 1, 2, 3]) # (x_min, y_min, x_max, y_max) | |
image = torch.LongTensor( | |
[ | |
[0, 0, 10, 20], | |
[10, 20, 5, 1], | |
[10, 20, 1, 1], | |
[5, 4, 0, 1], | |
] | |
) | |
cropped = crop_around_box(image, bbox) | |
self.assertClose(cropped, image[1:3, 0:2]) | |
def test_clamp_box_to_image_bounds_and_round(self): | |
bbox = torch.LongTensor([0, 1, 10, 12]) | |
image_size = (5, 6) | |
expected_clamped_bbox = torch.LongTensor([0, 1, image_size[1], image_size[0]]) | |
clamped_bbox = clamp_box_to_image_bounds_and_round(bbox, image_size) | |
self.assertClose(clamped_bbox, expected_clamped_bbox) | |
def test_get_clamp_bbox(self): | |
bbox_xywh = torch.LongTensor([1, 1, 4, 5]) | |
clamped_bbox_xyxy = get_clamp_bbox(bbox_xywh, box_crop_context=2) | |
# size multiplied by 2 and added coordinates | |
self.assertClose(clamped_bbox_xyxy, torch.Tensor([-3, -4, 9, 11])) | |
def test_rescale_bbox(self): | |
bbox = torch.Tensor([0.0, 1.0, 3.0, 4.0]) | |
original_resolution = (4, 4) | |
new_resolution = (8, 8) # twice bigger | |
rescaled_bbox = rescale_bbox(bbox, original_resolution, new_resolution) | |
self.assertClose(bbox * 2, rescaled_bbox) | |
def test_get_1d_bounds(self): | |
array = [0, 1, 2] | |
bounds = get_1d_bounds(array) | |
# make nonzero 1d bounds of image | |
self.assertClose(bounds, [1, 3]) | |
def test_resize_image(self): | |
image = np.random.rand(3, 300, 500) # rgb image 300x500 | |
expected_shape = (150, 250) | |
resized_image, scale, mask_crop = resize_image( | |
image, image_height=expected_shape[0], image_width=expected_shape[1] | |
) | |
original_shape = image.shape[-2:] | |
expected_scale = min( | |
expected_shape[0] / original_shape[0], expected_shape[1] / original_shape[1] | |
) | |
self.assertEqual(scale, expected_scale) | |
self.assertEqual(resized_image.shape[-2:], expected_shape) | |
self.assertEqual(mask_crop.shape[-2:], expected_shape) | |