Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
from math import pi | |
import torch | |
from pytorch3d.implicitron.tools.circle_fitting import ( | |
_signed_area, | |
fit_circle_in_2d, | |
fit_circle_in_3d, | |
get_rotation_to_best_fit_xy, | |
) | |
from pytorch3d.transforms import random_rotation, random_rotations | |
from tests.common_testing import TestCaseMixin | |
class TestCircleFitting(TestCaseMixin, unittest.TestCase): | |
def setUp(self): | |
torch.manual_seed(42) | |
def _assertParallel(self, a, b, **kwargs): | |
""" | |
Given a and b of shape (..., 3) each containing 3D vectors, | |
assert that correspnding vectors are parallel. Changed sign is ok. | |
""" | |
self.assertClose(torch.cross(a, b, dim=-1), torch.zeros_like(a), **kwargs) | |
def test_plane_levelling(self): | |
device = torch.device("cuda:0") | |
B = 16 | |
N = 1024 | |
random = torch.randn((B, N, 3), device=device) | |
# first, check that we always return a vaild rotation | |
rot = get_rotation_to_best_fit_xy(random) | |
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0])) | |
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0])) | |
# then, check the result is what we expect | |
z_squeeze = 0.1 | |
random[..., -1] *= z_squeeze | |
rot_gt = random_rotations(B, device=device) | |
rotated = random @ rot_gt.transpose(-1, -2) | |
rot_hat = get_rotation_to_best_fit_xy(rotated) | |
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0])) | |
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0])) | |
# covariance matrix of the levelled points is by design diag(1, 1, z_squeeze²) | |
self.assertClose( | |
(rotated @ rot_hat)[..., -1].std(dim=-1), | |
torch.ones_like(rot_hat[:, 0, 0]) * z_squeeze, | |
rtol=0.1, | |
) | |
def test_simple_3d(self): | |
device = torch.device("cuda:0") | |
for _ in range(7): | |
radius = 10 * torch.rand(1, device=device)[0] | |
center = 10 * torch.rand(3, device=device) | |
rot = random_rotation(device=device) | |
offset = torch.rand(3, device=device) | |
up = torch.rand(3, device=device) | |
self._simple_3d_test(radius, center, rot, offset, up) | |
def _simple_3d_test(self, radius, center, rot, offset, up): | |
# angles are increasing so the points move in a well defined direction. | |
angles = torch.cumsum(torch.rand(17, device=rot.device), dim=0) | |
many = torch.stack( | |
[torch.cos(angles), torch.sin(angles), torch.zeros_like(angles)], dim=1 | |
) | |
source_points = (many * radius) @ rot + center[None] | |
# case with no generation | |
result = fit_circle_in_3d(source_points) | |
self.assertClose(result.radius, radius) | |
self.assertClose(result.center, center) | |
self._assertParallel(result.normal, rot[2], atol=1e-5) | |
self.assertEqual(result.generated_points.shape, (0, 3)) | |
# Generate 5 points around the circle | |
n_new_points = 5 | |
result2 = fit_circle_in_3d(source_points, n_points=n_new_points) | |
self.assertClose(result2.radius, radius) | |
self.assertClose(result2.center, center) | |
self.assertClose(result2.normal, result.normal) | |
self.assertEqual(result2.generated_points.shape, (5, 3)) | |
observed_points = result2.generated_points | |
self.assertClose(observed_points[0], observed_points[4], atol=1e-4) | |
self.assertClose(observed_points[0], source_points[0], atol=1e-5) | |
observed_normal = torch.cross( | |
observed_points[0] - observed_points[2], | |
observed_points[1] - observed_points[3], | |
dim=-1, | |
) | |
self._assertParallel(observed_normal, result.normal, atol=1e-4) | |
diameters = observed_points[:2] - observed_points[2:4] | |
self.assertClose( | |
torch.norm(diameters, dim=1), diameters.new_full((2,), 2 * radius) | |
) | |
# Regenerate the input points | |
result3 = fit_circle_in_3d(source_points, angles=angles - angles[0]) | |
self.assertClose(result3.radius, radius) | |
self.assertClose(result3.center, center) | |
self.assertClose(result3.normal, result.normal) | |
self.assertClose(result3.generated_points, source_points, atol=1e-5) | |
# Test with offset | |
result4 = fit_circle_in_3d( | |
source_points, angles=angles - angles[0], offset=offset, up=up | |
) | |
self.assertClose(result4.radius, radius) | |
self.assertClose(result4.center, center) | |
self.assertClose(result4.normal, result.normal) | |
observed_offsets = result4.generated_points - source_points | |
# observed_offset is constant | |
self.assertClose( | |
observed_offsets.min(0).values, observed_offsets.max(0).values, atol=1e-5 | |
) | |
# observed_offset has the right length | |
self.assertClose(observed_offsets[0].norm(), offset.norm()) | |
self.assertClose(result.normal.norm(), torch.ones(())) | |
# component of observed_offset along normal | |
component = torch.dot(observed_offsets[0], result.normal) | |
self.assertClose(component.abs(), offset[2].abs(), atol=1e-5) | |
agree_normal = torch.dot(result.normal, up) > 0 | |
agree_signs = component * offset[2] > 0 | |
self.assertEqual(agree_normal, agree_signs) | |
def test_simple_2d(self): | |
radius = 7.0 | |
center = torch.tensor([9, 2.5]) | |
angles = torch.cumsum(torch.rand(17), dim=0) | |
many = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1) | |
source_points = (many * radius) + center[None] | |
result = fit_circle_in_2d(source_points) | |
self.assertClose(result.radius, torch.tensor(radius)) | |
self.assertClose(result.center, center) | |
self.assertEqual(result.generated_points.shape, (0, 2)) | |
# Generate 5 points around the circle | |
n_new_points = 5 | |
result2 = fit_circle_in_2d(source_points, n_points=n_new_points) | |
self.assertClose(result2.radius, torch.tensor(radius)) | |
self.assertClose(result2.center, center) | |
self.assertEqual(result2.generated_points.shape, (5, 2)) | |
observed_points = result2.generated_points | |
self.assertClose(observed_points[0], observed_points[4]) | |
self.assertClose(observed_points[0], source_points[0], atol=1e-5) | |
diameters = observed_points[:2] - observed_points[2:4] | |
self.assertClose(torch.norm(diameters, dim=1), torch.full((2,), 2 * radius)) | |
# Regenerate the input points | |
result3 = fit_circle_in_2d(source_points, angles=angles - angles[0]) | |
self.assertClose(result3.radius, torch.tensor(radius)) | |
self.assertClose(result3.center, center) | |
self.assertClose(result3.generated_points, source_points, atol=1e-5) | |
def test_minimum_inputs(self): | |
fit_circle_in_3d(torch.rand(3, 3), n_points=10) | |
with self.assertRaisesRegex( | |
ValueError, "2 points are not enough to determine a circle" | |
): | |
fit_circle_in_3d(torch.rand(2, 3)) | |
def test_signed_area(self): | |
n_points = 1001 | |
angles = torch.linspace(0, 2 * pi, n_points) | |
radius = 0.85 | |
center = torch.rand(2) | |
circle = center + radius * torch.stack( | |
[torch.cos(angles), torch.sin(angles)], dim=1 | |
) | |
circle_area = torch.tensor(pi * radius * radius) | |
self.assertClose(_signed_area(circle), circle_area) | |
# clockwise is negative | |
self.assertClose(_signed_area(circle.flip(0)), -circle_area) | |
# Semicircles | |
self.assertClose(_signed_area(circle[: (n_points + 1) // 2]), circle_area / 2) | |
self.assertClose(_signed_area(circle[n_points // 2 :]), circle_area / 2) | |
# A straight line bounds no area | |
self.assertClose(_signed_area(torch.rand(2, 2)), torch.tensor(0.0)) | |
# Letter 'L' written anticlockwise. | |
L_shape = [[0, 1], [0, 0], [1, 0]] | |
# Triangle area is 0.5 * b * h. | |
self.assertClose(_signed_area(torch.tensor(L_shape)), torch.tensor(0.5)) | |