Linly-Talker / pytorch3d /tests /implicitron /test_circle_fitting.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from math import pi
import torch
from pytorch3d.implicitron.tools.circle_fitting import (
_signed_area,
fit_circle_in_2d,
fit_circle_in_3d,
get_rotation_to_best_fit_xy,
)
from pytorch3d.transforms import random_rotation, random_rotations
from tests.common_testing import TestCaseMixin
class TestCircleFitting(TestCaseMixin, unittest.TestCase):
def setUp(self):
torch.manual_seed(42)
def _assertParallel(self, a, b, **kwargs):
"""
Given a and b of shape (..., 3) each containing 3D vectors,
assert that correspnding vectors are parallel. Changed sign is ok.
"""
self.assertClose(torch.cross(a, b, dim=-1), torch.zeros_like(a), **kwargs)
def test_plane_levelling(self):
device = torch.device("cuda:0")
B = 16
N = 1024
random = torch.randn((B, N, 3), device=device)
# first, check that we always return a vaild rotation
rot = get_rotation_to_best_fit_xy(random)
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0]))
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0]))
# then, check the result is what we expect
z_squeeze = 0.1
random[..., -1] *= z_squeeze
rot_gt = random_rotations(B, device=device)
rotated = random @ rot_gt.transpose(-1, -2)
rot_hat = get_rotation_to_best_fit_xy(rotated)
self.assertClose(rot.det(), torch.ones_like(rot[:, 0, 0]))
self.assertClose(rot.norm(dim=-1), torch.ones_like(rot[:, 0]))
# covariance matrix of the levelled points is by design diag(1, 1, z_squeeze²)
self.assertClose(
(rotated @ rot_hat)[..., -1].std(dim=-1),
torch.ones_like(rot_hat[:, 0, 0]) * z_squeeze,
rtol=0.1,
)
def test_simple_3d(self):
device = torch.device("cuda:0")
for _ in range(7):
radius = 10 * torch.rand(1, device=device)[0]
center = 10 * torch.rand(3, device=device)
rot = random_rotation(device=device)
offset = torch.rand(3, device=device)
up = torch.rand(3, device=device)
self._simple_3d_test(radius, center, rot, offset, up)
def _simple_3d_test(self, radius, center, rot, offset, up):
# angles are increasing so the points move in a well defined direction.
angles = torch.cumsum(torch.rand(17, device=rot.device), dim=0)
many = torch.stack(
[torch.cos(angles), torch.sin(angles), torch.zeros_like(angles)], dim=1
)
source_points = (many * radius) @ rot + center[None]
# case with no generation
result = fit_circle_in_3d(source_points)
self.assertClose(result.radius, radius)
self.assertClose(result.center, center)
self._assertParallel(result.normal, rot[2], atol=1e-5)
self.assertEqual(result.generated_points.shape, (0, 3))
# Generate 5 points around the circle
n_new_points = 5
result2 = fit_circle_in_3d(source_points, n_points=n_new_points)
self.assertClose(result2.radius, radius)
self.assertClose(result2.center, center)
self.assertClose(result2.normal, result.normal)
self.assertEqual(result2.generated_points.shape, (5, 3))
observed_points = result2.generated_points
self.assertClose(observed_points[0], observed_points[4], atol=1e-4)
self.assertClose(observed_points[0], source_points[0], atol=1e-5)
observed_normal = torch.cross(
observed_points[0] - observed_points[2],
observed_points[1] - observed_points[3],
dim=-1,
)
self._assertParallel(observed_normal, result.normal, atol=1e-4)
diameters = observed_points[:2] - observed_points[2:4]
self.assertClose(
torch.norm(diameters, dim=1), diameters.new_full((2,), 2 * radius)
)
# Regenerate the input points
result3 = fit_circle_in_3d(source_points, angles=angles - angles[0])
self.assertClose(result3.radius, radius)
self.assertClose(result3.center, center)
self.assertClose(result3.normal, result.normal)
self.assertClose(result3.generated_points, source_points, atol=1e-5)
# Test with offset
result4 = fit_circle_in_3d(
source_points, angles=angles - angles[0], offset=offset, up=up
)
self.assertClose(result4.radius, radius)
self.assertClose(result4.center, center)
self.assertClose(result4.normal, result.normal)
observed_offsets = result4.generated_points - source_points
# observed_offset is constant
self.assertClose(
observed_offsets.min(0).values, observed_offsets.max(0).values, atol=1e-5
)
# observed_offset has the right length
self.assertClose(observed_offsets[0].norm(), offset.norm())
self.assertClose(result.normal.norm(), torch.ones(()))
# component of observed_offset along normal
component = torch.dot(observed_offsets[0], result.normal)
self.assertClose(component.abs(), offset[2].abs(), atol=1e-5)
agree_normal = torch.dot(result.normal, up) > 0
agree_signs = component * offset[2] > 0
self.assertEqual(agree_normal, agree_signs)
def test_simple_2d(self):
radius = 7.0
center = torch.tensor([9, 2.5])
angles = torch.cumsum(torch.rand(17), dim=0)
many = torch.stack([torch.cos(angles), torch.sin(angles)], dim=1)
source_points = (many * radius) + center[None]
result = fit_circle_in_2d(source_points)
self.assertClose(result.radius, torch.tensor(radius))
self.assertClose(result.center, center)
self.assertEqual(result.generated_points.shape, (0, 2))
# Generate 5 points around the circle
n_new_points = 5
result2 = fit_circle_in_2d(source_points, n_points=n_new_points)
self.assertClose(result2.radius, torch.tensor(radius))
self.assertClose(result2.center, center)
self.assertEqual(result2.generated_points.shape, (5, 2))
observed_points = result2.generated_points
self.assertClose(observed_points[0], observed_points[4])
self.assertClose(observed_points[0], source_points[0], atol=1e-5)
diameters = observed_points[:2] - observed_points[2:4]
self.assertClose(torch.norm(diameters, dim=1), torch.full((2,), 2 * radius))
# Regenerate the input points
result3 = fit_circle_in_2d(source_points, angles=angles - angles[0])
self.assertClose(result3.radius, torch.tensor(radius))
self.assertClose(result3.center, center)
self.assertClose(result3.generated_points, source_points, atol=1e-5)
def test_minimum_inputs(self):
fit_circle_in_3d(torch.rand(3, 3), n_points=10)
with self.assertRaisesRegex(
ValueError, "2 points are not enough to determine a circle"
):
fit_circle_in_3d(torch.rand(2, 3))
def test_signed_area(self):
n_points = 1001
angles = torch.linspace(0, 2 * pi, n_points)
radius = 0.85
center = torch.rand(2)
circle = center + radius * torch.stack(
[torch.cos(angles), torch.sin(angles)], dim=1
)
circle_area = torch.tensor(pi * radius * radius)
self.assertClose(_signed_area(circle), circle_area)
# clockwise is negative
self.assertClose(_signed_area(circle.flip(0)), -circle_area)
# Semicircles
self.assertClose(_signed_area(circle[: (n_points + 1) // 2]), circle_area / 2)
self.assertClose(_signed_area(circle[n_points // 2 :]), circle_area / 2)
# A straight line bounds no area
self.assertClose(_signed_area(torch.rand(2, 2)), torch.tensor(0.0))
# Letter 'L' written anticlockwise.
L_shape = [[0, 1], [0, 0], [1, 0]]
# Triangle area is 0.5 * b * h.
self.assertClose(_signed_area(torch.tensor(L_shape)), torch.tensor(0.5))