Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import contextlib | |
import os | |
import unittest | |
import unittest.mock | |
import torch | |
from omegaconf import OmegaConf | |
from pytorch3d.implicitron.dataset.data_loader_map_provider import ( | |
SequenceDataLoaderMapProvider, | |
SimpleDataLoaderMapProvider, | |
) | |
from pytorch3d.implicitron.dataset.data_source import ImplicitronDataSource | |
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset | |
from pytorch3d.implicitron.tools.config import get_default_args | |
from tests.common_testing import get_tests_dir | |
from tests.implicitron.common_resources import get_skateboard_data | |
DATA_DIR = get_tests_dir() / "implicitron/data" | |
DEBUG: bool = False | |
class TestDataSource(unittest.TestCase): | |
def setUp(self): | |
self.maxDiff = None | |
torch.manual_seed(42) | |
stack = contextlib.ExitStack() | |
self.dataset_root, self.path_manager = stack.enter_context( | |
get_skateboard_data() | |
) | |
self.addCleanup(stack.close) | |
def _test_omegaconf_generic_failure(self): | |
# OmegaConf possible bug - this is why we need _GenericWorkaround | |
from dataclasses import dataclass | |
import torch | |
class D(torch.utils.data.Dataset[int]): | |
a: int = 3 | |
OmegaConf.structured(D) | |
def _test_omegaconf_ListList(self): | |
# Demo that OmegaConf doesn't support nested lists | |
from dataclasses import dataclass | |
from typing import Sequence | |
class A: | |
a: Sequence[Sequence[int]] = ((32,),) | |
OmegaConf.structured(A) | |
def test_JsonIndexDataset_args(self): | |
# test that JsonIndexDataset works with get_default_args | |
get_default_args(JsonIndexDataset) | |
def test_one(self): | |
cfg = get_default_args(ImplicitronDataSource) | |
# making the test invariant to env variables | |
cfg.dataset_map_provider_JsonIndexDatasetMapProvider_args.dataset_root = "" | |
cfg.dataset_map_provider_JsonIndexDatasetMapProviderV2_args.dataset_root = "" | |
# making the test invariant to the presence of SQL dataset | |
if "dataset_map_provider_SqlIndexDatasetMapProvider_args" in cfg: | |
del cfg.dataset_map_provider_SqlIndexDatasetMapProvider_args | |
yaml = OmegaConf.to_yaml(cfg, sort_keys=False) | |
if DEBUG: | |
(DATA_DIR / "data_source.yaml").write_text(yaml) | |
self.assertEqual(yaml, (DATA_DIR / "data_source.yaml").read_text()) | |
def test_default(self): | |
if os.environ.get("INSIDE_RE_WORKER") is not None: | |
return | |
args = get_default_args(ImplicitronDataSource) | |
args.dataset_map_provider_class_type = "JsonIndexDatasetMapProvider" | |
dataset_args = args.dataset_map_provider_JsonIndexDatasetMapProvider_args | |
dataset_args.category = "skateboard" | |
dataset_args.test_restrict_sequence_id = 0 | |
dataset_args.n_frames_per_sequence = -1 | |
dataset_args.dataset_root = self.dataset_root | |
data_source = ImplicitronDataSource(**args) | |
self.assertIsInstance( | |
data_source.data_loader_map_provider, SequenceDataLoaderMapProvider | |
) | |
_, data_loaders = data_source.get_datasets_and_dataloaders() | |
self.assertEqual(len(data_loaders.train), 81) | |
for i in data_loaders.train: | |
self.assertEqual(i.frame_type, ["test_known"]) | |
break | |
def test_simple(self): | |
if os.environ.get("INSIDE_RE_WORKER") is not None: | |
return | |
args = get_default_args(ImplicitronDataSource) | |
args.dataset_map_provider_class_type = "JsonIndexDatasetMapProvider" | |
args.data_loader_map_provider_class_type = "SimpleDataLoaderMapProvider" | |
dataset_args = args.dataset_map_provider_JsonIndexDatasetMapProvider_args | |
dataset_args.category = "skateboard" | |
dataset_args.test_restrict_sequence_id = 0 | |
dataset_args.n_frames_per_sequence = -1 | |
dataset_args.dataset_root = self.dataset_root | |
data_source = ImplicitronDataSource(**args) | |
self.assertIsInstance( | |
data_source.data_loader_map_provider, SimpleDataLoaderMapProvider | |
) | |
_, data_loaders = data_source.get_datasets_and_dataloaders() | |
self.assertEqual(len(data_loaders.train), 81) | |
for i in data_loaders.train: | |
self.assertEqual(i.frame_type, ["test_known"]) | |
break | |