Linly-Talker / pytorch3d /tests /implicitron /test_model_visualize.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import math
import os
import unittest
from typing import Tuple
import torch
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset
from pytorch3d.implicitron.dataset.visualize import get_implicitron_sequence_pointcloud
from pytorch3d.implicitron.models.visualization.render_flyaround import render_flyaround
from pytorch3d.implicitron.tools.config import expand_args_fields
from pytorch3d.implicitron.tools.point_cloud_utils import render_point_cloud_pytorch3d
from pytorch3d.renderer.cameras import CamerasBase
from tests.common_testing import interactive_testing_requested
from visdom import Visdom
from .common_resources import get_skateboard_data
class TestModelVisualize(unittest.TestCase):
def test_flyaround_one_sequence(
self,
image_size: int = 256,
):
if not interactive_testing_requested():
return
category = "skateboard"
stack = contextlib.ExitStack()
dataset_root, path_manager = stack.enter_context(get_skateboard_data())
self.addCleanup(stack.close)
frame_file = os.path.join(dataset_root, category, "frame_annotations.jgz")
sequence_file = os.path.join(dataset_root, category, "sequence_annotations.jgz")
subset_lists_file = os.path.join(dataset_root, category, "set_lists.json")
expand_args_fields(JsonIndexDataset)
train_dataset = JsonIndexDataset(
frame_annotations_file=frame_file,
sequence_annotations_file=sequence_file,
subset_lists_file=subset_lists_file,
dataset_root=dataset_root,
image_height=image_size,
image_width=image_size,
box_crop=True,
load_point_clouds=True,
path_manager=path_manager,
subsets=[
"train_known",
],
)
# select few sequences to visualize
sequence_names = list(train_dataset.seq_annots.keys())
# select the first sequence name
show_sequence_name = sequence_names[0]
output_dir = os.path.split(os.path.abspath(__file__))[0]
visdom_show_preds = Visdom().check_connection()
for load_dataset_pointcloud in [True, False]:
model = _PointcloudRenderingModel(
train_dataset,
show_sequence_name,
device="cuda:0",
load_dataset_pointcloud=load_dataset_pointcloud,
)
video_path = os.path.join(
output_dir,
f"load_pcl_{load_dataset_pointcloud}",
)
os.makedirs(output_dir, exist_ok=True)
for output_video_frames_dir in [None, video_path]:
render_flyaround(
train_dataset,
show_sequence_name,
model,
video_path,
n_flyaround_poses=10,
fps=5,
max_angle=2 * math.pi,
trajectory_type="circular_lsq_fit",
trajectory_scale=1.1,
scene_center=(0.0, 0.0, 0.0),
up=(0.0, 1.0, 0.0),
traj_offset=1.0,
n_source_views=1,
visdom_show_preds=visdom_show_preds,
visdom_environment="test_model_visalize",
visdom_server="http://127.0.0.1",
visdom_port=8097,
num_workers=10,
seed=None,
video_resize=None,
visualize_preds_keys=[
"images_render",
"depths_render",
"masks_render",
"_all_source_images",
],
output_video_frames_dir=output_video_frames_dir,
)
class _PointcloudRenderingModel(torch.nn.Module):
def __init__(
self,
train_dataset: JsonIndexDataset,
sequence_name: str,
render_size: Tuple[int, int] = (400, 400),
device=None,
load_dataset_pointcloud: bool = False,
max_frames: int = 30,
num_workers: int = 10,
):
super().__init__()
self._render_size = render_size
point_cloud, _ = get_implicitron_sequence_pointcloud(
train_dataset,
sequence_name=sequence_name,
mask_points=True,
max_frames=max_frames,
num_workers=num_workers,
load_dataset_point_cloud=load_dataset_pointcloud,
)
self._point_cloud = point_cloud.to(device)
def forward(
self,
camera: CamerasBase,
**kwargs,
):
image_render, mask_render, depth_render = render_point_cloud_pytorch3d(
camera[0],
self._point_cloud,
render_size=self._render_size,
point_radius=1e-2,
topk=10,
bg_color=0.0,
)
return {
"images_render": image_render.clamp(0.0, 1.0),
"masks_render": mask_render,
"depths_render": depth_render,
}