Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import os | |
import unittest | |
from collections import Counter | |
import pkg_resources | |
import torch | |
from pytorch3d.implicitron.dataset.sql_dataset import SqlIndexDataset | |
NO_BLOBS_KWARGS = { | |
"dataset_root": "", | |
"load_images": False, | |
"load_depths": False, | |
"load_masks": False, | |
"load_depth_masks": False, | |
"box_crop": False, | |
} | |
logger = logging.getLogger("pytorch3d.implicitron.dataset.sql_dataset") | |
sh = logging.StreamHandler() | |
logger.addHandler(sh) | |
logger.setLevel(logging.DEBUG) | |
DATASET_ROOT = pkg_resources.resource_filename(__name__, "data/sql_dataset") | |
METADATA_FILE = os.path.join(DATASET_ROOT, "sql_dataset_100.sqlite") | |
SET_LIST_FILE = os.path.join(DATASET_ROOT, "set_lists_100.json") | |
class TestSqlDataset(unittest.TestCase): | |
def test_basic(self, sequence="cat1_seq2", frame_number=4): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 100) | |
# check the items are consecutive | |
past_sequences = set() | |
last_frame_number = -1 | |
last_sequence = "" | |
for i in range(len(dataset)): | |
item = dataset[i] | |
if item.frame_number == 0: | |
self.assertNotIn(item.sequence_name, past_sequences) | |
past_sequences.add(item.sequence_name) | |
last_sequence = item.sequence_name | |
else: | |
self.assertEqual(item.sequence_name, last_sequence) | |
self.assertEqual(item.frame_number, last_frame_number + 1) | |
last_frame_number = item.frame_number | |
# test indexing | |
with self.assertRaises(IndexError): | |
dataset[len(dataset) + 1] | |
# test sequence-frame indexing | |
item = dataset[sequence, frame_number] | |
self.assertEqual(item.sequence_name, sequence) | |
self.assertEqual(item.frame_number, frame_number) | |
with self.assertRaises(IndexError): | |
dataset[sequence, 13] | |
def test_filter_empty_masks(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 78) | |
def test_pick_frames_sql_clause(self): | |
dataset_no_empty_masks = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
pick_frames_sql_clause="_mask_mass IS NULL OR _mask_mass > 0", | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
# check the datasets are equal | |
self.assertEqual(len(dataset), len(dataset_no_empty_masks)) | |
for i in range(len(dataset)): | |
item_nem = dataset_no_empty_masks[i] | |
item = dataset[i] | |
self.assertEqual(item_nem.image_path, item.image_path) | |
# remove_empty_masks together with the custom criterion | |
dataset_ts = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
pick_frames_sql_clause="frame_timestamp < 0.15", | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset_ts), 19) | |
def test_limit_categories(self, category="cat0"): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
pick_categories=[category], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 50) | |
for i in range(len(dataset)): | |
self.assertEqual(dataset[i].sequence_category, category) | |
def test_limit_sequences(self, num_sequences=3): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
limit_sequences_to=num_sequences, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 10 * num_sequences) | |
def delist(sequence_name): | |
return sequence_name if isinstance(sequence_name, str) else sequence_name[0] | |
unique_seqs = {delist(dataset[i].sequence_name) for i in range(len(dataset))} | |
self.assertEqual(len(unique_seqs), num_sequences) | |
def test_pick_exclude_sequencess(self, sequence="cat1_seq2"): | |
# pick sequence | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
pick_sequences=[sequence], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 10) | |
unique_seqs = {dataset[i].sequence_name for i in range(len(dataset))} | |
self.assertCountEqual(unique_seqs, {sequence}) | |
item = dataset[sequence, 0] | |
self.assertEqual(item.sequence_name, sequence) | |
self.assertEqual(item.frame_number, 0) | |
# exclude sequence | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
exclude_sequences=[sequence], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 90) | |
unique_seqs = {dataset[i].sequence_name for i in range(len(dataset))} | |
self.assertNotIn(sequence, unique_seqs) | |
with self.assertRaises(IndexError): | |
dataset[sequence, 0] | |
def test_limit_frames(self, num_frames=13): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
limit_to=num_frames, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), num_frames) | |
unique_seqs = {dataset[i].sequence_name for i in range(len(dataset))} | |
self.assertEqual(len(unique_seqs), 2) | |
# test when the limit is not binding | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
limit_to=1000, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 100) | |
def test_limit_frames_per_sequence(self, num_frames=2): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
n_frames_per_sequence=num_frames, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), num_frames * 10) | |
seq_counts = Counter(dataset[i].sequence_name for i in range(len(dataset))) | |
self.assertEqual(len(seq_counts), 10) | |
self.assertCountEqual( | |
set(seq_counts.values()), {2} | |
) # all counts are num_frames | |
with self.assertRaises(IndexError): | |
dataset[next(iter(seq_counts)), num_frames + 1] | |
# test when the limit is not binding | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
n_frames_per_sequence=13, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 100) | |
def test_limit_sequence_per_category(self, num_sequences=2): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
limit_sequences_per_category_to=num_sequences, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), num_sequences * 10 * 2) | |
seq_names = list(dataset.sequence_names()) | |
self.assertEqual(len(seq_names), num_sequences * 2) | |
# check that we respect the row order | |
for seq_name in seq_names: | |
self.assertLess(int(seq_name[-1]), num_sequences) | |
# test when the limit is not binding | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
limit_sequences_per_category_to=13, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 100) | |
def test_filter_medley(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
pick_categories=["cat1"], | |
exclude_sequences=["cat1_seq0"], # retaining "cat1_seq1" and on | |
limit_sequences_to=2, # retaining "cat1_seq1" and "cat1_seq2" | |
limit_to=14, # retaining full "cat1_seq1" and 4 from "cat1_seq2" | |
n_frames_per_sequence=6, # cutting "cat1_seq1" to 6 frames | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
# result: preserved 6 frames from cat1_seq1 and 4 from cat1_seq2 | |
seq_counts = Counter(dataset[i].sequence_name for i in range(len(dataset))) | |
self.assertCountEqual(seq_counts.keys(), ["cat1_seq1", "cat1_seq2"]) | |
self.assertEqual(seq_counts["cat1_seq1"], 6) | |
self.assertEqual(seq_counts["cat1_seq2"], 4) | |
def test_subsets_trivial(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
subset_lists_file=SET_LIST_FILE, | |
limit_to=100, # force sorting | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 100) | |
# check the items are consecutive | |
past_sequences = set() | |
last_frame_number = -1 | |
last_sequence = "" | |
for i in range(len(dataset)): | |
item = dataset[i] | |
if item.frame_number == 0: | |
self.assertNotIn(item.sequence_name, past_sequences) | |
past_sequences.add(item.sequence_name) | |
last_sequence = item.sequence_name | |
else: | |
self.assertEqual(item.sequence_name, last_sequence) | |
self.assertEqual(item.frame_number, last_frame_number + 1) | |
last_frame_number = item.frame_number | |
def test_subsets_filter_empty_masks(self): | |
# we need to test this case as it uses quite different logic with `df.drop()` | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 78) | |
def test_subsets_pick_frames_sql_clause(self): | |
dataset_no_empty_masks = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
pick_frames_sql_clause="_mask_mass IS NULL OR _mask_mass > 0", | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
# check the datasets are equal | |
self.assertEqual(len(dataset), len(dataset_no_empty_masks)) | |
for i in range(len(dataset)): | |
item_nem = dataset_no_empty_masks[i] | |
item = dataset[i] | |
self.assertEqual(item_nem.image_path, item.image_path) | |
# remove_empty_masks together with the custom criterion | |
dataset_ts = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
pick_frames_sql_clause="frame_timestamp < 0.15", | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset_ts), 19) | |
def test_single_subset(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 50) | |
with self.assertRaises(IndexError): | |
dataset[51] | |
# check the items are consecutive | |
past_sequences = set() | |
last_frame_number = -1 | |
last_sequence = "" | |
for i in range(len(dataset)): | |
item = dataset[i] | |
if item.frame_number < 2: | |
self.assertNotIn(item.sequence_name, past_sequences) | |
past_sequences.add(item.sequence_name) | |
last_sequence = item.sequence_name | |
else: | |
self.assertEqual(item.sequence_name, last_sequence) | |
self.assertEqual(item.frame_number, last_frame_number + 2) | |
last_frame_number = item.frame_number | |
item = dataset[last_sequence, 0] | |
self.assertEqual(item.sequence_name, last_sequence) | |
with self.assertRaises(IndexError): | |
dataset[last_sequence, 1] | |
def test_subset_with_filters(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train"], | |
pick_categories=["cat1"], | |
exclude_sequences=["cat1_seq0"], # retaining "cat1_seq1" and on | |
limit_sequences_to=2, # retaining "cat1_seq1" and "cat1_seq2" | |
limit_to=7, # retaining full train set of "cat1_seq1" and 2 from "cat1_seq2" | |
n_frames_per_sequence=3, # cutting "cat1_seq1" to 3 frames | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
# result: preserved 6 frames from cat1_seq1 and 4 from cat1_seq2 | |
seq_counts = Counter(dataset[i].sequence_name for i in range(len(dataset))) | |
self.assertCountEqual(seq_counts.keys(), ["cat1_seq1", "cat1_seq2"]) | |
self.assertEqual(seq_counts["cat1_seq1"], 3) | |
self.assertEqual(seq_counts["cat1_seq2"], 2) | |
def test_visitor(self): | |
dataset_sorted = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
sequences = dataset_sorted.sequence_names() | |
i = 0 | |
for seq in sequences: | |
last_ts = float("-Inf") | |
for ts, _, idx in dataset_sorted.sequence_frames_in_order(seq): | |
self.assertEqual(i, idx) | |
i += 1 | |
self.assertGreaterEqual(ts, last_ts) | |
last_ts = ts | |
# test legacy visitor | |
old_indices = None | |
for seq in sequences: | |
last_ts = float("-Inf") | |
rows = dataset_sorted._index.index.get_loc(seq) | |
indices = list(range(rows.start or 0, rows.stop, rows.step or 1)) | |
fn_ts_list = dataset_sorted.get_frame_numbers_and_timestamps(indices) | |
self.assertEqual(len(fn_ts_list), len(indices)) | |
if old_indices: | |
# check raising if we ask for multiple sequences | |
with self.assertRaises(ValueError): | |
dataset_sorted.get_frame_numbers_and_timestamps( | |
indices + old_indices | |
) | |
old_indices = indices | |
def test_visitor_subsets(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
limit_to=100, # force sorting | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
sequences = dataset.sequence_names() | |
i = 0 | |
for seq in sequences: | |
last_ts = float("-Inf") | |
seq_frames = list(dataset.sequence_frames_in_order(seq)) | |
self.assertEqual(len(seq_frames), 10) | |
for ts, _, idx in seq_frames: | |
self.assertEqual(i, idx) | |
i += 1 | |
self.assertGreaterEqual(ts, last_ts) | |
last_ts = ts | |
last_ts = float("-Inf") | |
train_frames = list(dataset.sequence_frames_in_order(seq, "train")) | |
self.assertEqual(len(train_frames), 5) | |
for ts, _, _ in train_frames: | |
self.assertGreaterEqual(ts, last_ts) | |
last_ts = ts | |
def test_category_to_sequence_names(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
cat_to_seqs = dataset.category_to_sequence_names() | |
self.assertEqual(len(cat_to_seqs), 2) | |
self.assertIn("cat1", cat_to_seqs) | |
self.assertEqual(len(cat_to_seqs["cat1"]), 5) | |
# check that override preserves the behavior | |
cat_to_seqs_base = super(SqlIndexDataset, dataset).category_to_sequence_names() | |
self.assertDictEqual(cat_to_seqs, cat_to_seqs_base) | |
def test_category_to_sequence_names_filters(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=True, | |
subset_lists_file=SET_LIST_FILE, | |
exclude_sequences=["cat1_seq0"], | |
subsets=["train", "test"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
cat_to_seqs = dataset.category_to_sequence_names() | |
self.assertEqual(len(cat_to_seqs), 2) | |
self.assertIn("cat1", cat_to_seqs) | |
self.assertEqual(len(cat_to_seqs["cat1"]), 4) # minus one | |
# check that override preserves the behavior | |
cat_to_seqs_base = super(SqlIndexDataset, dataset).category_to_sequence_names() | |
self.assertDictEqual(cat_to_seqs, cat_to_seqs_base) | |
def test_meta_access(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train"], | |
frame_data_builder_FrameDataBuilder_args=NO_BLOBS_KWARGS, | |
) | |
self.assertEqual(len(dataset), 50) | |
for idx in [10, ("cat0_seq2", 2)]: | |
example_meta = dataset.meta[idx] | |
example = dataset[idx] | |
self.assertEqual(example_meta.sequence_name, example.sequence_name) | |
self.assertEqual(example_meta.frame_number, example.frame_number) | |
self.assertEqual(example_meta.frame_timestamp, example.frame_timestamp) | |
self.assertEqual(example_meta.sequence_category, example.sequence_category) | |
torch.testing.assert_close(example_meta.camera.R, example.camera.R) | |
torch.testing.assert_close(example_meta.camera.T, example.camera.T) | |
torch.testing.assert_close( | |
example_meta.camera.focal_length, example.camera.focal_length | |
) | |
torch.testing.assert_close( | |
example_meta.camera.principal_point, example.camera.principal_point | |
) | |
def test_meta_access_no_blobs(self): | |
dataset = SqlIndexDataset( | |
sqlite_metadata_file=METADATA_FILE, | |
remove_empty_masks=False, | |
subset_lists_file=SET_LIST_FILE, | |
subsets=["train"], | |
frame_data_builder_FrameDataBuilder_args={ | |
"dataset_root": ".", | |
"box_crop": False, # required by blob-less accessor | |
}, | |
) | |
self.assertIsNone(dataset.meta[0].image_rgb) | |
self.assertIsNone(dataset.meta[0].fg_probability) | |
self.assertIsNone(dataset.meta[0].depth_map) | |
self.assertIsNone(dataset.meta[0].sequence_point_cloud) | |
self.assertIsNotNone(dataset.meta[0].camera) | |