Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import cliport.utils.utils as utils | |
class IdentityBlock(nn.Module): | |
def __init__(self, in_planes, filters, kernel_size, stride=1, final_relu=True, batchnorm=True): | |
super(IdentityBlock, self).__init__() | |
self.final_relu = final_relu | |
self.batchnorm = batchnorm | |
filters1, filters2, filters3 = filters | |
self.conv1 = nn.Conv2d(in_planes, filters1, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(filters1) if self.batchnorm else nn.Identity() | |
self.conv2 = nn.Conv2d(filters1, filters2, kernel_size=kernel_size, dilation=1, | |
stride=stride, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(filters2) if self.batchnorm else nn.Identity() | |
self.conv3 = nn.Conv2d(filters2, filters3, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(filters3) if self.batchnorm else nn.Identity() | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = F.relu(self.bn2(self.conv2(out))) | |
out = self.bn3(self.conv3(out)) | |
out += x | |
if self.final_relu: | |
out = F.relu(out) | |
return out | |
class ConvBlock(nn.Module): | |
def __init__(self, in_planes, filters, kernel_size, stride=1, final_relu=True, batchnorm=True): | |
super(ConvBlock, self).__init__() | |
self.final_relu = final_relu | |
self.batchnorm = batchnorm | |
filters1, filters2, filters3 = filters | |
self.conv1 = nn.Conv2d(in_planes, filters1, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(filters1) if self.batchnorm else nn.Identity() | |
self.conv2 = nn.Conv2d(filters1, filters2, kernel_size=kernel_size, dilation=1, | |
stride=stride, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(filters2) if self.batchnorm else nn.Identity() | |
self.conv3 = nn.Conv2d(filters2, filters3, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(filters3) if self.batchnorm else nn.Identity() | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_planes, filters3, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(filters3) if self.batchnorm else nn.Identity() | |
) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = F.relu(self.bn2(self.conv2(out))) | |
out = self.bn3(self.conv3(out)) | |
out += self.shortcut(x) | |
if self.final_relu: | |
out = F.relu(out) | |
return out | |
class ResNet43_8s(nn.Module): | |
def __init__(self, input_shape, output_dim, cfg, device, preprocess): | |
super(ResNet43_8s, self).__init__() | |
self.input_shape = input_shape | |
self.input_dim = input_shape[-1] | |
self.output_dim = output_dim | |
self.cfg = cfg | |
self.device = device | |
self.batchnorm = self.cfg['train']['batchnorm'] | |
self.preprocess = preprocess | |
self.layers = self._make_layers() | |
def _make_layers(self): | |
layers = nn.Sequential( | |
# conv1 | |
nn.Conv2d(self.input_dim, 64, stride=1, kernel_size=3, padding=1), | |
nn.BatchNorm2d(64) if self.batchnorm else nn.Identity(), | |
nn.ReLU(True), | |
# fcn | |
ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
ConvBlock(64, [128, 128, 128], kernel_size=3, stride=2, batchnorm=self.batchnorm), | |
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
ConvBlock(128, [256, 256, 256], kernel_size=3, stride=2, batchnorm=self.batchnorm), | |
IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
ConvBlock(256, [512, 512, 512], kernel_size=3, stride=2, batchnorm=self.batchnorm), | |
IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
# head | |
ConvBlock(512, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
ConvBlock(256, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
# conv2 | |
ConvBlock(64, [16, 16, self.output_dim], kernel_size=3, stride=1, | |
final_relu=False, batchnorm=self.batchnorm), | |
IdentityBlock(self.output_dim, [16, 16, self.output_dim], kernel_size=3, stride=1, | |
final_relu=False, batchnorm=self.batchnorm), | |
) | |
return layers | |
def forward(self, x): | |
x = self.preprocess(x, dist='transporter') | |
out = self.layers(x) | |
return out |