GenSim / cliport /models /backbone_full.py
LeroyWaa's picture
add gensim code
8fc2b4e
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Backbone modules.
"""
from collections import OrderedDict
import torch
import torch.nn.functional as F
import torchvision
from timm.models import create_model
from torch import nn
from torchvision.models._utils import IntermediateLayerGetter
from cliport.models.misc import NestedTensor
class FrozenBatchNorm2d(torch.nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
without which any other models than torchvision.models.resnet[18,34,50,101]
produce nans.
"""
def __init__(self, n):
super(FrozenBatchNorm2d, self).__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super(FrozenBatchNorm2d, self)._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
eps = 1e-5
scale = w * (rv + eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
class BackboneBase(nn.Module):
def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool):
super().__init__()
for name, parameter in backbone.named_parameters():
if not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name:
parameter.requires_grad_(False)
if return_interm_layers:
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
else:
return_layers = {"layer4": 0}
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
self.num_channels = num_channels
def forward(self, tensor_list):
xs = self.body(tensor_list.tensors)
out = OrderedDict()
for name, x in xs.items():
mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0]
out[name] = NestedTensor(x, mask)
return out
class Backbone(BackboneBase):
"""ResNet backbone with frozen BatchNorm."""
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
backbone = getattr(torchvision.models, name)(
replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=FrozenBatchNorm2d
)
num_channels = 512 if name in ("resnet18", "resnet34") else 2048
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
class GroupNorm32(torch.nn.GroupNorm):
def __init__(self, num_channels, num_groups=32, **kargs):
super().__init__(num_groups, num_channels, **kargs)
class GroupNormBackbone(BackboneBase):
"""ResNet backbone with GroupNorm with 32 channels."""
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
name_map = {
"resnet50-gn": ("resnet50", "/checkpoint/szagoruyko/imagenet/22014122/checkpoint.pth"),
"resnet101-gn": ("resnet101", "/checkpoint/szagoruyko/imagenet/22080524/checkpoint.pth"),
}
backbone = getattr(torchvision.models, name_map[name][0])(
replace_stride_with_dilation=[False, False, dilation], pretrained=False, norm_layer=GroupNorm32
)
checkpoint = torch.load(name_map[name][1], map_location="cpu")
state_dict = {k[7:]: p for k, p in checkpoint["model"].items()}
backbone.load_state_dict(state_dict)
num_channels = 512 if name_map[name][0] in ("resnet18", "resnet34") else 2048
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
def replace_bn(m, name=""):
for attr_str in dir(m):
target_attr = getattr(m, attr_str)
if isinstance(target_attr, torch.nn.BatchNorm2d):
frozen = FrozenBatchNorm2d(target_attr.num_features)
bn = getattr(m, attr_str)
frozen.weight.data.copy_(bn.weight)
frozen.bias.data.copy_(bn.bias)
frozen.running_mean.data.copy_(bn.running_mean)
frozen.running_var.data.copy_(bn.running_var)
setattr(m, attr_str, frozen)
for n, ch in m.named_children():
replace_bn(ch, n)
class GN_8(nn.Module):
def __init__(self, num_channels):
super().__init__()
self.gn = torch.nn.GroupNorm(8, num_channels)
def forward(self, x):
return self.gn(x)
class TimmBackbone(nn.Module):
def __init__(self, name, return_interm_layers, main_layer=-1, group_norm=False):
super().__init__()
backbone = create_model(name, pretrained=True, in_chans=3, features_only=True, out_indices=(1, 2, 3, 4))
with torch.no_grad():
replace_bn(backbone)
num_channels = backbone.feature_info.channels()[-1]
self.body = backbone
self.num_channels = num_channels
self.interm = return_interm_layers
self.main_layer = main_layer
def forward(self, tensor_list):
xs = self.body(tensor_list.tensors)
if not self.interm:
xs = [xs[self.main_layer]]
out = OrderedDict()
for i, x in enumerate(xs):
mask = F.interpolate(tensor_list.mask[None].float(), size=x.shape[-2:]).bool()[0]
out[f"layer{i}"] = NestedTensor(x, mask)
return out