Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import torch.nn.functional as F | |
import cliport.utils.utils as utils | |
from cliport.models.resnet import IdentityBlock, ConvBlock | |
from cliport.models.clip_lingunet_lat import CLIPLingUNetLat | |
class CLIPWithoutSkipConnections(CLIPLingUNetLat): | |
""" CLIP RN50 with decoders (no skip connections) """ | |
def __init__(self, input_shape, output_dim, cfg, device, preprocess): | |
super().__init__(input_shape, output_dim, cfg, device, preprocess) | |
def _build_decoder(self): | |
self.layers = nn.Sequential( | |
# conv1 | |
nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.ReLU(True), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
# decoder blocks | |
ConvBlock(1024, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
ConvBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
ConvBlock(512, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
ConvBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
ConvBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), | |
# conv2 | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
nn.Conv2d(32, self.output_dim, kernel_size=1) | |
) | |
def forward(self, x): | |
x = self.preprocess(x, dist='clip') | |
in_type = x.dtype | |
in_shape = x.shape | |
x = x[:,:3] # select RGB | |
x, _ = self.encode_image(x) | |
x = x.to(in_type) | |
assert x.shape[1] == self.input_dim | |
x = self.layers(x) | |
x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') | |
return x |