GenSim / cliport /models /resnet_lang.py
LeroyWaa's picture
add gensim code
8fc2b4e
import torch
import torch.nn as nn
import torch.nn.functional as F
import cliport.utils.utils as utils
from transformers import DistilBertTokenizer, DistilBertModel
from cliport.models.core import fusion
from cliport.models.resnet import ConvBlock, IdentityBlock
class ResNet43_8s_lang(nn.Module):
def __init__(self, input_shape, output_dim, cfg, device, preprocess):
super(ResNet43_8s_lang, self).__init__()
self.input_shape = input_shape
self.input_dim = input_shape[-1]
self.output_dim = output_dim
self.cfg = cfg
self.device = device
self.batchnorm = self.cfg['train']['batchnorm']
self.lang_fusion_type = self.cfg['train']['lang_fusion_type']
self.preprocess = preprocess
self._make_layers()
def _make_layers(self):
self.conv1 = nn.Sequential(
# conv1
nn.Conv2d(self.input_dim, 64, stride=1, kernel_size=3, padding=1),
nn.BatchNorm2d(64) if self.batchnorm else nn.Identity(),
nn.ReLU(True),
# fcn
ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
ConvBlock(64, [128, 128, 128], kernel_size=3, stride=2, batchnorm=self.batchnorm),
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
ConvBlock(128, [256, 256, 256], kernel_size=3, stride=2, batchnorm=self.batchnorm),
IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
ConvBlock(256, [512, 512, 512], kernel_size=3, stride=2, batchnorm=self.batchnorm),
IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm),
)
# decoders
self.decoder1 = nn.Sequential(
ConvBlock(512, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm),
nn.UpsamplingBilinear2d(scale_factor=2),
)
self.decoder2 = nn.Sequential(
ConvBlock(256, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm),
nn.UpsamplingBilinear2d(scale_factor=2),
)
self.decoder3 = nn.Sequential(
ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm),
nn.UpsamplingBilinear2d(scale_factor=2),
)
self.conv2 = nn.Sequential(
# conv2
ConvBlock(64, [16, 16, self.output_dim], kernel_size=3, stride=1,
final_relu=False, batchnorm=self.batchnorm),
IdentityBlock(self.output_dim, [16, 16, self.output_dim], kernel_size=3, stride=1,
final_relu=False, batchnorm=self.batchnorm),
)
self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
self.text_encoder = DistilBertModel.from_pretrained('distilbert-base-uncased')
self.text_fc = nn.Linear(768, 1024)
self.lang_fuser1 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 2)
self.lang_fuser2 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 4)
self.lang_fuser3 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 8)
self.proj_input_dim = 512 if 'word' in self.lang_fusion_type else 1024
self.lang_proj1 = nn.Linear(self.proj_input_dim, 512)
self.lang_proj2 = nn.Linear(self.proj_input_dim, 256)
self.lang_proj3 = nn.Linear(self.proj_input_dim, 128)
def encode_text(self, l):
with torch.no_grad():
inputs = self.tokenizer(l, return_tensors='pt')
input_ids, attention_mask = inputs['input_ids'].to(self.device), inputs['attention_mask'].to(self.device)
text_embeddings = self.text_encoder(input_ids, attention_mask)
text_encodings = text_embeddings.last_hidden_state.mean(1)
text_feat = self.text_fc(text_encodings)
text_mask = torch.ones_like(input_ids) # [1, max_token_len]
return text_feat, text_embeddings.last_hidden_state, text_mask
def forward(self, x, l):
x = self.preprocess(x, dist='transporter')
# encode language
l_enc, l_emb, l_mask = self.encode_text(l)
l_input = l_emb if 'word' in self.lang_fusion_type else l_enc
l_input = l_input.to(dtype=x.dtype)
x = self.conv1(x)
x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1)
x = self.decoder1(x)
x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2)
x = self.decoder2(x)
x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3)
x = self.decoder3(x)
out = self.conv2(x)
return out