File size: 11,791 Bytes
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# --------------------------------------------------------
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import json
import os
import time
import traceback
from typing import Optional

import numpy as np
from tqdm import tqdm

from datasets.encode_openx_dataset import MIN_VAL_EXAMPLES, MAX_VAL_EXAMPLES, get_shard_inds, VAL_RATIO, \
    process_dataset_step, DATA_FREQ_TABLE
from datasets.extern.ego4d import ego4d_dataset_size, ego4d_dataset_generator
from datasets.extern.egoexo4d import egoexo4d_dataset_size, egoexo4d_dataset_generator
from datasets.extern.robomimic import robomimic_dataset_generator, robomimic_dataset_size
from . import utils


SCRIPT_DESCRIPTION="""
Similar to encode_openx_dataset.py except for non-OpenX datasets.
Again, each split can be partitioned into multiple shards,
which is useful for parallelized encoding across GPUs.

Example usage:
    CUDA_VISIBLE_DEVICES=0 python -m datasets.encode_extern_dataset --dataset_name egoexo4d --data_split train --num_shards 1000 --curr_shard_rank 400

Untested usage (SVD tokenizer):
CUDA_VISIBLE_DEVICES=0 python -m datasets.encode_extern_dataset --dataset_name robomimic --data_split val --no_quantization --encoder_type temporalvae --encoder_name_or_path 'stabilityai/stable-video-diffusion-img2vid'
""".strip()

DATASET_TO_GEN_AND_SIZE = {
    "ego4d": (ego4d_dataset_generator, ego4d_dataset_size),
    "egoexo4d": (egoexo4d_dataset_generator, egoexo4d_dataset_size),
    "robomimic": (robomimic_dataset_generator, robomimic_dataset_size),
}


def encode_dataset_split(
    extern_dataset_name: str,
    split: str,
    max_episodes: Optional[int],
    original_res: bool,
    no_quantization: bool,
    curr_shard_rank: int,
    num_shards: int,
    root_dir: str,
    encoder_type: str,
    encoder_name_or_path: str,
    dataset_postfix: str = "",
    no_encoding: bool = False,
):
    """
    Encodes (e.g. tokenizes) dataset.
    The data written to disk can be used to load a `RawTokenDataset` (or the continuous version.)

    Args:
        extern_dataset_name:  TODO
        split: expected to be either "train" or "val". TODO: decide how to split
        max_episodes: the maximum number of trajectories to include in the dataset.
        dataset_postfix: will be a suffix of the output dirname.
        image_encoder: string specifying the type of image encoder/tokenizer to use.
        original_res: if True, will maintain original resolution of the video rather than resizing it to 256x256.
        no_quantization: if True, will not perform quantization step in image encoder.
    """
    extern_dataset_name = extern_dataset_name.strip()  # never modified
    suffixed_dataset_name = extern_dataset_name  # will modify later

    if original_res:
        suffixed_dataset_name = f"{suffixed_dataset_name}_originalres"
    if no_quantization:
        suffixed_dataset_name = f"{suffixed_dataset_name}_noquant"
    if no_encoding:
        suffixed_dataset_name = f"{suffixed_dataset_name}_noencoding"
    save_dirname = "_".join([suffixed_dataset_name, encoder_type, dataset_postfix, split])
    dataset_path = os.path.join(root_dir, save_dirname)
    print("=" * 25)
    print(f"{dataset_path=}")
    utils.mkdir_if_missing(dataset_path)

    # Load data
    generator, size_func = DATASET_TO_GEN_AND_SIZE[extern_dataset_name]
    num_examples = size_func()
    if max_episodes is not None:
        num_examples = min(num_examples, max_episodes)  # clip num_examples

    # We will only operate on a subset of the training examples, depending on:
    #      1) The split (train/val). Some examples are reserved for the other split.
    #      2) Sharding
    assert num_examples > MIN_VAL_EXAMPLES  # non-positive number of train examples otherwise
    num_val_examples = np.clip(int(VAL_RATIO * num_examples), MIN_VAL_EXAMPLES, MAX_VAL_EXAMPLES)

    if split == "train":  # first_ind inclusive, last_ind exclusive
        first_split_ind, last_split_ind = num_val_examples, num_examples
    elif split == "val":
        first_split_ind, last_split_ind = 0, num_val_examples
    else:
        raise NotImplementedError(f"{split=}")

    first_shard_ind, last_shard_ind = get_shard_inds(first_split_ind, last_split_ind, curr_shard_rank, num_shards)
    print(f"Total number of examples in {suffixed_dataset_name}: {num_examples}")
    print(f"Number of examples for {split=}, shard {curr_shard_rank} of {num_shards}: "
          f"{last_shard_ind - first_shard_ind}. {first_shard_ind=} {last_shard_ind=}")

    ##### Encode data #####
    traj_lens = []  # only used to print statistics
    videos = []  # NOTE: videos/actions for the entire shard are stored in RAM until the end
    actions = []
    segment_ids = []

    # split based on some fixed batch sizes to reset RAM.
    max_batch_per_loading = 10
    pbar = tqdm(range(first_shard_ind, last_shard_ind, max_batch_per_loading), position=0, leave=True)
    start_time = time.time()

    for start_idx in pbar:
        end_idx = min(start_idx + max_batch_per_loading, last_shard_ind)
        pbar.set_description(f"{suffixed_dataset_name} caching episodes: {start_idx}:{end_idx}")
        ds = generator(range(start_idx, end_idx))

        for chunk_idx, episode in enumerate(tqdm(ds, position=1, leave=False)):
            segment_id = start_idx + chunk_idx
            try:
                # batchify the data and then process
                for step_ind, step_data in enumerate(episode["steps"]):
                    dataset_step = process_dataset_step(
                        step_data,
                        encoder_type=encoder_type,
                        encoder_name_or_path=encoder_name_or_path,
                        keep_res=original_res,
                        quantize=not no_quantization,
                        no_encoding=no_encoding
                    )

                    segment_ids.append(segment_id)
                    videos.append(dataset_step["image"])
                    actions.append(dataset_step["action"])

                traj_lens.append(step_ind + 1)  # number of steps in this trajectory
            except:
                print("-" * 25)
                print(f"Add episode failed: {segment_id=}", traceback.format_exc(), suffixed_dataset_name)

            # 2 day timeout
            if time.time() - start_time > 86400 * 2:
                print(f"Writing dataset {suffixed_dataset_name} timed out")
                break

    if len(videos) == 0:
        print("Empty shard!")
        with open(f"{dataset_path}/error.json", "w") as f:
            json.dump({"status": "empty_shard"}, f)

        return

    if no_quantization:
        num_channels, height, width = videos[-1].shape[:3]  # num_channels is not actually stored in metadata
    else:
        height, width = videos[-1].shape[:2]
        num_channels = None

    ##### Write videos, actions, segment_ids, and metadata #####
    # align format to save segment_ids.bin, video.bin, actions/action.bin, metadata.json
    # save videos
    videos = np.stack(videos, axis=0)
    # fp = np.memmap(f'{dataset_path}/video.bin', dtype=video_dtype, mode='w+', shape=videos.shape)
    # fp[:] = videos[:]
    videos.tofile(f'{dataset_path}/video.bin')

    # save action
    utils.mkdir_if_missing(f'{dataset_path}/actions')
    actions = np.stack(actions, axis=0)
    # fp = np.memmap(f'{dataset_path}/actions/actions.bin', dtype=np.float32, mode='w+', shape=actions.shape)
    # fp[:] = actions[:]
    actions = actions.astype(np.float32)
    actions.tofile(f'{dataset_path}/actions/actions.bin')

    # save segment_ids
    segment_ids = np.array(segment_ids)
    # fp = np.memmap(f'{dataset_path}/segment_ids.bin', dtype=np.int32, mode='w+', shape=segment_ids.shape)
    # fp[:] = segment_ids[:]  # map to trajectory index
    segment_ids = segment_ids.astype(np.int32)
    segment_ids.tofile(f'{dataset_path}/segment_ids.bin')

    # feature_mean = np.mean(videos)
    # feature_std = np.std((videos - feature_mean) / 1e9) * 1e9

    # save metadata
    if encoder_type == "magvit":
        vocab_size = int(2 ** 18)
    elif encoder_type == "temporalvae":
        vocab_size = None
    else:
        raise NotImplementedError(f"{encoder_type=}")

    with open(f'{dataset_path}/metadata.json', 'w') as f:  # Technically only need to save most of this data for shard 0
        json.dump({
            "token_dtype": str(np.dtype(videos.dtype)),
            "action_dim": actions[0].shape[-1],
            "s": 16,
            "h": height,
            "w": width,
            "vocab_size": vocab_size,
            "hz": DATA_FREQ_TABLE.get(extern_dataset_name, 1),  # to be loaded from the data code
            "encoder_name_or_path": encoder_name_or_path,
            "encoder_type": encoder_type,
            "num_images": len(videos),
            "latent_channels": num_channels,
            "name": extern_dataset_name,
            # "feature_mean": feature_mean,
            # "feature_std": feature_std,
        }, f)

    print(f"{len(traj_lens)=} {np.mean(traj_lens)=} {np.sum(traj_lens)=}")
    print(f"Dataset creation time: {time.time() - start_time:.3f}")


def parse_args():
    parser = argparse.ArgumentParser(description=SCRIPT_DESCRIPTION)

    parser.add_argument(
        "--dataset_name", type=str, required=True, choices=DATASET_TO_GEN_AND_SIZE.keys(),
        help="TODO"
    )
    parser.add_argument(
        "--data_split", type=str, choices=["train", "val"], required=True,
        help="The split of the dataset to create."
    )
    parser.add_argument(
        "--episode_cnt", type=int,
        help="If specified, will limit the maximum number of trajectories to encode."
    )
    parser.add_argument(
        "--original_res", action='store_true',
        help="Maintain original resolution of the video rather than resizing it to 256x256."
    )
    parser.add_argument(
        "--no_quantization", action='store_true',
        help="Skip quantization step in visual encoder."
    )
    parser.add_argument(
        "--num_shards", type=int, default=1,
        help="The number of shards to partition the train/val dataset into."
    )
    parser.add_argument(
        "--curr_shard_rank", type=int, default=0,
        help="The (0-indexed) shard number to encode."
    )
    parser.add_argument(
        "--root_dir", type=str, default="data",
        help="The root directory to write all datasets to."
    )
    parser.add_argument(
        "--encoder_type", type=str, default="magvit", choices=["magvit", "temporalvae"],
        help="Type of the image tokenizer."
    )
    parser.add_argument(
        "--encoder_name_or_path", type=str, default="data/magvit2.ckpt",
        help="The path or name of the image encoder."
    )
    parser.add_argument(
        "--no_encoding", action='store_true',
        help="Preserve the groundtruth raw images to compute metrics in validation."
    )
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    utils.set_seed(233)

    dataset_postfix = f"shard{args.curr_shard_rank}_of_{args.num_shards}"
    if args.episode_cnt is not None:
        dataset_postfix = f"max{args.episode_cnt}_{dataset_postfix}"

    encode_dataset_split(
        extern_dataset_name=args.dataset_name,
        split=args.data_split,
        max_episodes=args.episode_cnt,
        dataset_postfix=dataset_postfix,
        original_res=args.original_res,
        no_quantization=args.no_quantization,
        num_shards=args.num_shards,
        curr_shard_rank=args.curr_shard_rank,
        root_dir=args.root_dir,
        encoder_type=args.encoder_type,
        encoder_name_or_path=args.encoder_name_or_path,
        no_encoding=args.no_encoding,
    )