Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,791 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# --------------------------------------------------------
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import json
import os
import time
import traceback
from typing import Optional
import numpy as np
from tqdm import tqdm
from datasets.encode_openx_dataset import MIN_VAL_EXAMPLES, MAX_VAL_EXAMPLES, get_shard_inds, VAL_RATIO, \
process_dataset_step, DATA_FREQ_TABLE
from datasets.extern.ego4d import ego4d_dataset_size, ego4d_dataset_generator
from datasets.extern.egoexo4d import egoexo4d_dataset_size, egoexo4d_dataset_generator
from datasets.extern.robomimic import robomimic_dataset_generator, robomimic_dataset_size
from . import utils
SCRIPT_DESCRIPTION="""
Similar to encode_openx_dataset.py except for non-OpenX datasets.
Again, each split can be partitioned into multiple shards,
which is useful for parallelized encoding across GPUs.
Example usage:
CUDA_VISIBLE_DEVICES=0 python -m datasets.encode_extern_dataset --dataset_name egoexo4d --data_split train --num_shards 1000 --curr_shard_rank 400
Untested usage (SVD tokenizer):
CUDA_VISIBLE_DEVICES=0 python -m datasets.encode_extern_dataset --dataset_name robomimic --data_split val --no_quantization --encoder_type temporalvae --encoder_name_or_path 'stabilityai/stable-video-diffusion-img2vid'
""".strip()
DATASET_TO_GEN_AND_SIZE = {
"ego4d": (ego4d_dataset_generator, ego4d_dataset_size),
"egoexo4d": (egoexo4d_dataset_generator, egoexo4d_dataset_size),
"robomimic": (robomimic_dataset_generator, robomimic_dataset_size),
}
def encode_dataset_split(
extern_dataset_name: str,
split: str,
max_episodes: Optional[int],
original_res: bool,
no_quantization: bool,
curr_shard_rank: int,
num_shards: int,
root_dir: str,
encoder_type: str,
encoder_name_or_path: str,
dataset_postfix: str = "",
no_encoding: bool = False,
):
"""
Encodes (e.g. tokenizes) dataset.
The data written to disk can be used to load a `RawTokenDataset` (or the continuous version.)
Args:
extern_dataset_name: TODO
split: expected to be either "train" or "val". TODO: decide how to split
max_episodes: the maximum number of trajectories to include in the dataset.
dataset_postfix: will be a suffix of the output dirname.
image_encoder: string specifying the type of image encoder/tokenizer to use.
original_res: if True, will maintain original resolution of the video rather than resizing it to 256x256.
no_quantization: if True, will not perform quantization step in image encoder.
"""
extern_dataset_name = extern_dataset_name.strip() # never modified
suffixed_dataset_name = extern_dataset_name # will modify later
if original_res:
suffixed_dataset_name = f"{suffixed_dataset_name}_originalres"
if no_quantization:
suffixed_dataset_name = f"{suffixed_dataset_name}_noquant"
if no_encoding:
suffixed_dataset_name = f"{suffixed_dataset_name}_noencoding"
save_dirname = "_".join([suffixed_dataset_name, encoder_type, dataset_postfix, split])
dataset_path = os.path.join(root_dir, save_dirname)
print("=" * 25)
print(f"{dataset_path=}")
utils.mkdir_if_missing(dataset_path)
# Load data
generator, size_func = DATASET_TO_GEN_AND_SIZE[extern_dataset_name]
num_examples = size_func()
if max_episodes is not None:
num_examples = min(num_examples, max_episodes) # clip num_examples
# We will only operate on a subset of the training examples, depending on:
# 1) The split (train/val). Some examples are reserved for the other split.
# 2) Sharding
assert num_examples > MIN_VAL_EXAMPLES # non-positive number of train examples otherwise
num_val_examples = np.clip(int(VAL_RATIO * num_examples), MIN_VAL_EXAMPLES, MAX_VAL_EXAMPLES)
if split == "train": # first_ind inclusive, last_ind exclusive
first_split_ind, last_split_ind = num_val_examples, num_examples
elif split == "val":
first_split_ind, last_split_ind = 0, num_val_examples
else:
raise NotImplementedError(f"{split=}")
first_shard_ind, last_shard_ind = get_shard_inds(first_split_ind, last_split_ind, curr_shard_rank, num_shards)
print(f"Total number of examples in {suffixed_dataset_name}: {num_examples}")
print(f"Number of examples for {split=}, shard {curr_shard_rank} of {num_shards}: "
f"{last_shard_ind - first_shard_ind}. {first_shard_ind=} {last_shard_ind=}")
##### Encode data #####
traj_lens = [] # only used to print statistics
videos = [] # NOTE: videos/actions for the entire shard are stored in RAM until the end
actions = []
segment_ids = []
# split based on some fixed batch sizes to reset RAM.
max_batch_per_loading = 10
pbar = tqdm(range(first_shard_ind, last_shard_ind, max_batch_per_loading), position=0, leave=True)
start_time = time.time()
for start_idx in pbar:
end_idx = min(start_idx + max_batch_per_loading, last_shard_ind)
pbar.set_description(f"{suffixed_dataset_name} caching episodes: {start_idx}:{end_idx}")
ds = generator(range(start_idx, end_idx))
for chunk_idx, episode in enumerate(tqdm(ds, position=1, leave=False)):
segment_id = start_idx + chunk_idx
try:
# batchify the data and then process
for step_ind, step_data in enumerate(episode["steps"]):
dataset_step = process_dataset_step(
step_data,
encoder_type=encoder_type,
encoder_name_or_path=encoder_name_or_path,
keep_res=original_res,
quantize=not no_quantization,
no_encoding=no_encoding
)
segment_ids.append(segment_id)
videos.append(dataset_step["image"])
actions.append(dataset_step["action"])
traj_lens.append(step_ind + 1) # number of steps in this trajectory
except:
print("-" * 25)
print(f"Add episode failed: {segment_id=}", traceback.format_exc(), suffixed_dataset_name)
# 2 day timeout
if time.time() - start_time > 86400 * 2:
print(f"Writing dataset {suffixed_dataset_name} timed out")
break
if len(videos) == 0:
print("Empty shard!")
with open(f"{dataset_path}/error.json", "w") as f:
json.dump({"status": "empty_shard"}, f)
return
if no_quantization:
num_channels, height, width = videos[-1].shape[:3] # num_channels is not actually stored in metadata
else:
height, width = videos[-1].shape[:2]
num_channels = None
##### Write videos, actions, segment_ids, and metadata #####
# align format to save segment_ids.bin, video.bin, actions/action.bin, metadata.json
# save videos
videos = np.stack(videos, axis=0)
# fp = np.memmap(f'{dataset_path}/video.bin', dtype=video_dtype, mode='w+', shape=videos.shape)
# fp[:] = videos[:]
videos.tofile(f'{dataset_path}/video.bin')
# save action
utils.mkdir_if_missing(f'{dataset_path}/actions')
actions = np.stack(actions, axis=0)
# fp = np.memmap(f'{dataset_path}/actions/actions.bin', dtype=np.float32, mode='w+', shape=actions.shape)
# fp[:] = actions[:]
actions = actions.astype(np.float32)
actions.tofile(f'{dataset_path}/actions/actions.bin')
# save segment_ids
segment_ids = np.array(segment_ids)
# fp = np.memmap(f'{dataset_path}/segment_ids.bin', dtype=np.int32, mode='w+', shape=segment_ids.shape)
# fp[:] = segment_ids[:] # map to trajectory index
segment_ids = segment_ids.astype(np.int32)
segment_ids.tofile(f'{dataset_path}/segment_ids.bin')
# feature_mean = np.mean(videos)
# feature_std = np.std((videos - feature_mean) / 1e9) * 1e9
# save metadata
if encoder_type == "magvit":
vocab_size = int(2 ** 18)
elif encoder_type == "temporalvae":
vocab_size = None
else:
raise NotImplementedError(f"{encoder_type=}")
with open(f'{dataset_path}/metadata.json', 'w') as f: # Technically only need to save most of this data for shard 0
json.dump({
"token_dtype": str(np.dtype(videos.dtype)),
"action_dim": actions[0].shape[-1],
"s": 16,
"h": height,
"w": width,
"vocab_size": vocab_size,
"hz": DATA_FREQ_TABLE.get(extern_dataset_name, 1), # to be loaded from the data code
"encoder_name_or_path": encoder_name_or_path,
"encoder_type": encoder_type,
"num_images": len(videos),
"latent_channels": num_channels,
"name": extern_dataset_name,
# "feature_mean": feature_mean,
# "feature_std": feature_std,
}, f)
print(f"{len(traj_lens)=} {np.mean(traj_lens)=} {np.sum(traj_lens)=}")
print(f"Dataset creation time: {time.time() - start_time:.3f}")
def parse_args():
parser = argparse.ArgumentParser(description=SCRIPT_DESCRIPTION)
parser.add_argument(
"--dataset_name", type=str, required=True, choices=DATASET_TO_GEN_AND_SIZE.keys(),
help="TODO"
)
parser.add_argument(
"--data_split", type=str, choices=["train", "val"], required=True,
help="The split of the dataset to create."
)
parser.add_argument(
"--episode_cnt", type=int,
help="If specified, will limit the maximum number of trajectories to encode."
)
parser.add_argument(
"--original_res", action='store_true',
help="Maintain original resolution of the video rather than resizing it to 256x256."
)
parser.add_argument(
"--no_quantization", action='store_true',
help="Skip quantization step in visual encoder."
)
parser.add_argument(
"--num_shards", type=int, default=1,
help="The number of shards to partition the train/val dataset into."
)
parser.add_argument(
"--curr_shard_rank", type=int, default=0,
help="The (0-indexed) shard number to encode."
)
parser.add_argument(
"--root_dir", type=str, default="data",
help="The root directory to write all datasets to."
)
parser.add_argument(
"--encoder_type", type=str, default="magvit", choices=["magvit", "temporalvae"],
help="Type of the image tokenizer."
)
parser.add_argument(
"--encoder_name_or_path", type=str, default="data/magvit2.ckpt",
help="The path or name of the image encoder."
)
parser.add_argument(
"--no_encoding", action='store_true',
help="Preserve the groundtruth raw images to compute metrics in validation."
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
utils.set_seed(233)
dataset_postfix = f"shard{args.curr_shard_rank}_of_{args.num_shards}"
if args.episode_cnt is not None:
dataset_postfix = f"max{args.episode_cnt}_{dataset_postfix}"
encode_dataset_split(
extern_dataset_name=args.dataset_name,
split=args.data_split,
max_episodes=args.episode_cnt,
dataset_postfix=dataset_postfix,
original_res=args.original_res,
no_quantization=args.no_quantization,
num_shards=args.num_shards,
curr_shard_rank=args.curr_shard_rank,
root_dir=args.root_dir,
encoder_type=args.encoder_type,
encoder_name_or_path=args.encoder_name_or_path,
no_encoding=args.no_encoding,
)
|