Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,469 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# --------------------------------------------------------
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import json
import os
import time
import traceback
from typing import Optional
import math
import numpy as np
import tensorflow_datasets as tfds
from tensorflow_datasets.core import DatasetBuilder
from tqdm import tqdm
from . import utils
SCRIPT_DESCRIPTION="""
Converts an Open X-Embodiment dataset from GS to encoded/tokenized data on disk.
This script only encodes one split (specified by `--data_split`)
of a one OpenX dataset (specified by `--dataset_name`) at a time.
Optionally, each split can be partitioned into multiple shards,
which is useful for parallelized encoding across GPUs.
Example usage:
CUDA_VISIBLE_DEVICES=0 python -m datasets.encode_openx_dataset --dataset_name bc_z --data_split train --episode_cnt 500 --num_shards 16 --curr_shard_rank 0
CUDA_VISIBLE_DEVICES=1 python -m datasets.encode_openx_dataset --dataset_name bc_z --data_split train --episode_cnt 500 --num_shards 16 --curr_shard_rank 1
set -e
for ((i = 0; i < 64; i += 2)); do
CUDA_VISIBLE_DEVICES=0 python -m datasets.encode_openx_dataset --dataset_name bridge --data_split train --num_shards 64 --curr_shard_rank $i --root_dir sharded_data
done
set -e
for ((i = 1; i < 64; i += 2)); do
CUDA_VISIBLE_DEVICES=1 python -m datasets.encode_openx_dataset --dataset_name bridge --data_split train --num_shards 64 --curr_shard_rank $i --root_dir sharded_data
done
Example usage (SVD tokenizer):
CUDA_VISIBLE_DEVICES=0 python -m datasets.encode_openx_dataset --dataset_name language_table --data_split val --no_quantization --encoder_type temporalvae --encoder_name_or_path 'stabilityai/stable-video-diffusion-img2vid'
""".strip()
# The validation set is the first VAL_RATIO examples in the dataset, and clipped to [MIN_VAL_EXAMPLES, MAX_VAL_EXAMPLES]
VAL_RATIO = 0.05
MIN_VAL_EXAMPLES, MAX_VAL_EXAMPLES = 20, 200
DATA_FREQ_TABLE = {
"austin_sailor_dataset_converted_externally_to_rlds": 20,
"stanford_hydra_dataset_converted_externally_to_rlds": 10,
"austin_buds_dataset_converted_externally_to_rlds": 20,
"austin_sirius_dataset_converted_externally_to_rlds": 20,
"berkeley_mvp_converted_externally_to_rlds": 5,
"berkeley_rpt_converted_externally_to_rlds": 30,
"ucsd_kitchen_dataset_converted_externally_to_rlds": 2,
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": 20,
"utaustin_mutex": 20,
"imperialcollege_sawyer_wrist_cam": 10,
"language_table": 2, # changed to match frequency
"kuka": 2, # changed to match frequency
"bc_z": 10,
"robo_net": 1,
"dlr_sara_pour_converted_externally_to_rlds": 10,
"stanford_robocook_converted_externally_to_rlds": 5,
"cmu_play_fusion": 5,
"bridge": 5,
"furniture_bench_dataset_converted_externally_to_rlds": 10,
"ucsd_pick_and_place_dataset_converted_externally_to_rlds": 3,
"usc_cloth_sim_converted_externally_to_rlds": 10,
"stanford_kuka_multimodal_dataset_converted_externally_to_rlds": 20,
"roboturk": 10,
"kaist_nonprehensile_converted_externally_to_rlds": 10,
"asu_table_top_converted_externally_to_rlds": 12,
"utokyo_xarm_pick_and_place_converted_externally_to_rlds": 10,
"berkeley_cable_routing": 10,
"droid": 15,
"uiuc_d3field": 1,
"robo_set": 5,
"toto": 30,
"nyu_door_opening_surprising_effectiveness": 3,
"nyu_franka_play_dataset_converted_externally_to_rlds": 3,
"mimic_play": 15,
"maniskill_dataset_converted_externally_to_rlds": 20,
"columbia_cairlab_pusht_real": 10,
"conq_hose_manipulation": 30,
"dlr_edan_shared_control_converted_externally_to_rlds": 5,
"berkeley_gnm_sac_son": 10,
"berkeley_autolab_ur5": 5,
"aloha_mobile": 30,
"1x_humanoid": 30,
"epic_kitchen_originalres": 30,
"epic_kitchen": 30,
"exoego4d": 30,
"ego4d": 1, # less than this.
"robomimic": 6, # average length around 50
"metaworld": 6,
"frodobot": 30,
"fractal20220817_data": 3,
# robomimic
"robomimic": 6, # average length around 50
"robomimic_new": 6, # average length around 50
"robomimic_multitask_new": 6, # average length around 50
"robomimic_new_perturb": 6, # average length around 50
"robomimic_multitask_new_perturb": 6, # average length around 50
}
def select_image(observation, verbose=False):
"""
Select a canonical frame as image observation.
"""
imgs = []
# does not need to prefer wrist camera
for key in ["rgb", "image"]:
for obs_key in observation:
if key in obs_key and "depth" not in obs_key:
image = observation[obs_key]
if type(observation[obs_key]) is not np.ndarray:
image = image.numpy()
if verbose:
print("selected image key:", obs_key)
imgs.append(image)
return imgs
def process_dataset_step(step, encoder_type: str, encoder_name_or_path: str,
keep_res=False, quantize=True, no_encoding=False):
"""
Map dataset-specific keys and values to a unified format.
Args:
step (dict): The step dictionary containing the dataset-specific information.
encoder_type (str, optional): The image encoder to use.
Returns:
dict: The processed step dictionary with the mapped keys and values.
"""
step_dict = {}
try:
if "action" in step:
step_dict["action"] = np.array(step["action"])
# handle action
if type(step["action"]) is dict:
step_dict["action"] = step_dict["action"].item()
# outlier cases
action = []
for k, v in sorted(step_dict["action"].items()):
action.append(v.numpy().reshape(-1))
step_dict["action"] = np.concatenate(action)
# handle image
images = select_image(step["observation"])
# compute the embeddings.
if no_encoding:
step_dict["image"] = utils.resize_image(images[0])
elif quantize:
step_dict["image"] = utils.get_quantized_image_embeddings(
images[0],
encoder_type=encoder_type,
encoder_name_or_path=encoder_name_or_path,
keep_res=keep_res,
)
else:
step_dict["image"] = utils.get_vae_image_embeddings(
images[0],
encoder_type=encoder_type,
encoder_name_or_path=encoder_name_or_path,
keep_res=keep_res,
)
except Exception as e:
print("--------------------------")
print("process_dataset_step exception:", traceback.format_exc())
return step_dict
def get_dataset_builder(gs_dataset_name) -> tuple[DatasetBuilder, int]:
"""
Returns the dataset builder and the total number of examples (for the train split).
"""
try:
builder = tfds.builder_from_directory(builder_dir=f"gs://gresearch/robotics/{gs_dataset_name}/0.1.0/")
except:
try:
builder = tfds.builder_from_directory(builder_dir=f"gs://gresearch/robotics/{gs_dataset_name}/1.0.0/")
except:
builder = tfds.builder_from_directory(builder_dir=f"gs://gresearch/robotics/{gs_dataset_name}/0.0.1/")
info = builder.info
num_examples = info.splits["train"].num_examples
return builder, num_examples
def get_shard_inds(first_split_ind: int, last_split_ind: int, curr_shard_rank: int, num_shards: int) -> tuple[int, int]:
"""
Given the indices of the first (inclusive) and last (exclusive) examples in the data split (i.e. entire train dataset or val dataset),
returns the indices of the first (inclusive) and last (exclusive) examples for the current shard in this data split.
"""
split_num_examples = last_split_ind - first_split_ind
shard_size_float = split_num_examples / num_shards # average number of examples per shard
return (
first_split_ind + math.ceil(curr_shard_rank * shard_size_float),
min(first_split_ind + math.ceil((curr_shard_rank + 1) * shard_size_float), last_split_ind)
)
def encode_dataset_split(
gs_dataset_name: str,
split: str,
max_episodes: Optional[int],
original_res: bool,
no_quantization: bool,
curr_shard_rank: int,
num_shards: int,
root_dir: str,
encoder_type: str,
encoder_name_or_path: str,
dataset_postfix: str = "",
no_encoding: bool = False,
):
"""
Converts an Open X-Embodiment dataset from GS to encoded/tokenized data on disk.
The data written to disk can be used to load a `RawTokenDataset` (or the continuous version.)
Args:
gs_dataset_name: the name of the dataset in Google Storage.
Can be checked with gsutil ls -d gs://gresearch/robotics/*/
split: expected to be either "train" or "val". TODO: decide how to split
max_episodes: the maximum number of trajectories to include in the dataset.
dataset_postfix: will be a suffix of the output dirname.
image_encoder: string specifying the type of image encoder/tokenizer to use.
original_res: if True, will maintain original resolution of the video rather than resizing it to 256x256.
no_quantization: if True, will not perform quantization step in image encoder.
"""
gs_dataset_name = gs_dataset_name.strip() # never modified
suffixed_dataset_name = gs_dataset_name # will modify later
if no_quantization:
video_dtype = np.float16
elif no_encoding:
video_dtype = np.uint8
else:
video_dtype = np.uint32
if original_res:
suffixed_dataset_name = f"{suffixed_dataset_name}_originalres"
if no_quantization:
suffixed_dataset_name = f"{suffixed_dataset_name}_noquant"
if no_encoding:
suffixed_dataset_name = f"{suffixed_dataset_name}_noencoding"
save_dirname = "_".join([suffixed_dataset_name, encoder_type, dataset_postfix, split])
dataset_path = os.path.join(root_dir, save_dirname)
print("=" * 25)
print(f"{dataset_path=}")
utils.mkdir_if_missing(dataset_path)
# Load data
builder, num_examples = get_dataset_builder(gs_dataset_name)
if max_episodes is not None:
num_examples = min(num_examples, max_episodes) # clip num_examples
# We will only operate on a subset of the training examples, depending on:
# 1) The split (train/val). Some examples are reserved for the other split.
# 2) Sharding
assert num_examples > MIN_VAL_EXAMPLES, f"{num_examples=} {MIN_VAL_EXAMPLES=}" # non-positive number of train examples otherwise
num_val_examples = np.clip(int(VAL_RATIO * num_examples), MIN_VAL_EXAMPLES, MAX_VAL_EXAMPLES)
if split == "train": # first_ind inclusive, last_ind exclusive
first_split_ind, last_split_ind = num_val_examples, num_examples
elif split == "val":
first_split_ind, last_split_ind = 0, num_val_examples
else:
raise NotImplementedError(f"{split=}")
first_shard_ind, last_shard_ind = get_shard_inds(first_split_ind, last_split_ind, curr_shard_rank, num_shards)
print(f"Total number of examples in {suffixed_dataset_name}: {num_examples}")
print(f"Number of examples for {split=}, shard {curr_shard_rank} of {num_shards}: "
f"{last_shard_ind - first_shard_ind}. {first_shard_ind=} {last_shard_ind=}")
##### Encode data #####
traj_lens = [] # only used to print statistics
videos = [] # NOTE: videos/actions for the entire shard are stored in RAM until the end
actions = []
segment_ids = []
# split based on some fixed batch sizes to reset RAM.
max_batch_per_loading = 10
pbar = tqdm(range(first_shard_ind, last_shard_ind, max_batch_per_loading), position=0, leave=True)
start_time = time.time()
for start_idx in pbar:
end_idx = min(start_idx + max_batch_per_loading, last_shard_ind)
pbar.set_description(f"{suffixed_dataset_name} caching episodes: {start_idx}:{end_idx}")
ds = builder.as_dataset(split=f"train[{start_idx}:{end_idx}]")
for chunk_idx, episode in enumerate(tqdm(ds, position=1, leave=False)):
segment_id = start_idx + chunk_idx
try:
# batchify the data and then process
for step_ind, step_data in enumerate(episode["steps"]):
dataset_step = process_dataset_step(
step_data,
encoder_type=encoder_type,
encoder_name_or_path=encoder_name_or_path,
keep_res=original_res,
quantize=not no_quantization,
no_encoding=no_encoding
)
segment_ids.append(segment_id)
videos.append(dataset_step["image"])
actions.append(dataset_step["action"])
traj_lens.append(step_ind + 1) # number of steps in this trajectory
except:
print("-" * 25)
print(f"Add episode failed: {segment_id=}", traceback.format_exc(), suffixed_dataset_name)
# 2 day timeout
if time.time() - start_time > 86400 * 2:
print(f"Writing dataset {suffixed_dataset_name} timed out")
break
if no_quantization:
num_channels, height, width = videos[-1].shape[:3]
else:
height, width = videos[-1].shape[:2]
num_channels = None
##### Write videos, actions, segment_ids, and metadata #####
# align format to save segment_ids.bin, video.bin, actions/action.bin, metadata.json
# save videos
videos = np.stack(videos, axis=0)
fp = np.memmap(f'{dataset_path}/video.bin', dtype=video_dtype, mode='w+', shape=videos.shape)
fp[:] = videos[:]
# save action
utils.mkdir_if_missing(f'{dataset_path}/actions')
actions = np.stack(actions, axis=0)
fp = np.memmap(f'{dataset_path}/actions/actions.bin', dtype=np.float32, mode='w+', shape=actions.shape)
fp[:] = actions[:]
# save segment_ids
segment_ids = np.array(segment_ids)
fp = np.memmap(f'{dataset_path}/segment_ids.bin', dtype=np.int32, mode='w+', shape=segment_ids.shape)
fp[:] = segment_ids[:] # map to trajectory index
# feature_mean = float(np.mean(videos))
# feature_std = float(np.std((videos - feature_mean) / 1e9)) * 1e9
# save metadata
if encoder_type == "magvit":
vocab_size = int(2 ** 18)
elif encoder_type == "temporalvae":
vocab_size = None
else:
raise NotImplementedError(f"{encoder_type=}")
with open(f'{dataset_path}/metadata.json', 'w') as f: # Technically only need to save most of this data for shard 0
json.dump({
"token_dtype": str(np.dtype(videos.dtype)),
"action_dim": actions[0].shape[-1],
"s": 16,
"h": height,
"w": width,
"vocab_size": vocab_size,
"hz": DATA_FREQ_TABLE.get(gs_dataset_name, 1), # to be loaded from the data code TODO: remove default?
"encoder_name_or_path": encoder_name_or_path,
"encoder_type": encoder_type,
"num_images": len(videos),
"name": gs_dataset_name,
"latent_channels": num_channels,
"quantized": not args.no_quantization,
# "feature_mean": feature_mean,
# "feature_std": feature_std,
}, f)
print(f"{len(traj_lens)=} {np.mean(traj_lens)=} {np.sum(traj_lens)=}")
print(f"Dataset creation time: {time.time() - start_time:.3f}")
def parse_args():
parser = argparse.ArgumentParser(description=SCRIPT_DESCRIPTION)
parser.add_argument(
"--dataset_name", type=str, required=True,
help="The name of the Open X-Embodiment dataset on Google Storage. "
"Can be checked with gsutil ls -d gs://gresearch/robotics/*/. "
)
parser.add_argument(
"--data_split", type=str, choices=["train", "val"], required=True,
help="The split of the dataset to create."
)
parser.add_argument(
"--episode_cnt", type=int,
help="If specified, will limit the maximum number of trajectories to encode."
)
parser.add_argument(
"--original_res", action='store_true',
help="Maintain original resolution of the video rather than resizing it to 256x256."
)
parser.add_argument(
"--no_quantization", action='store_true',
help="Skip quantization step in visual encoder."
)
parser.add_argument(
"--num_shards", type=int, default=1,
help="The number of shards to partition the train/val dataset into."
)
parser.add_argument(
"--curr_shard_rank", type=int, default=0,
help="The (0-indexed) shard number to encode."
)
parser.add_argument(
"--root_dir", type=str, default="data",
help="The root directory to write all datasets to."
)
parser.add_argument(
"--encoder_type", type=str, default="magvit", choices=["magvit", "temporalvae"],
help="Type of the image tokenizer."
)
parser.add_argument(
"--encoder_name_or_path", type=str, default="data/magvit2.ckpt",
help="The path or name of the image encoder."
)
parser.add_argument(
"--no_encoding", action='store_true',
help="Preserve the groundtruth raw images to compute metrics in validation."
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
utils.set_seed(233)
dataset_postfix = f"shard{args.curr_shard_rank}_of_{args.num_shards}" if args.num_shards > 1 else ""
if args.episode_cnt is not None:
dataset_postfix = f"max{args.episode_cnt}_{dataset_postfix}" if dataset_postfix else f"max{args.episode_cnt}"
encode_dataset_split(
gs_dataset_name=args.dataset_name,
split=args.data_split,
max_episodes=args.episode_cnt,
dataset_postfix=dataset_postfix,
original_res=args.original_res,
no_quantization=args.no_quantization,
num_shards=args.num_shards,
curr_shard_rank=args.curr_shard_rank,
root_dir=args.root_dir,
encoder_type=args.encoder_type,
encoder_name_or_path=args.encoder_name_or_path,
no_encoding=args.no_encoding,
)
|