Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,145 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
import cv2
import numpy as np
import torch
import torchvision.transforms.v2.functional as transforms_f
from diffusers import AutoencoderKLTemporalDecoder
from einops import rearrange
from transformers import T5Tokenizer, T5Model
from magvit2.config import VQConfig
from magvit2.models.lfqgan import VQModel
vision_model = None
def get_image_encoder(encoder_type: str, encoder_name_or_path: str):
encoder_type = encoder_type.lower()
if encoder_type == "magvit":
return VQModel(VQConfig(), ckpt_path=encoder_name_or_path)
elif encoder_type == "temporalvae":
return AutoencoderKLTemporalDecoder.from_pretrained(encoder_name_or_path, subfolder="vae")
else:
raise NotImplementedError(f"{encoder_type=}")
def set_seed(seed):
# set seed for reproducibility
torch.manual_seed(seed)
np.random.seed(seed)
def mkdir_if_missing(dst_dir):
"""make destination folder if it's missing"""
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
def resize_image(image, resize=True):
MAX_RES = 1024
# convert to array
image = np.asarray(image)
h, w = image.shape[:2]
if h > MAX_RES or w > MAX_RES:
if h < w:
new_h, new_w = int(MAX_RES * w / h), MAX_RES
else:
new_h, new_w = MAX_RES, int(MAX_RES * h / w)
image = cv2.resize(image, (new_w, new_h))
if resize:
# resize the shorter side to 256 and then do a center crop
h, w = image.shape[:2]
if h < w:
new_h, new_w = 256, int(256 * w / h)
else:
new_h, new_w = int(256 * h / w), 256
image = cv2.resize(image, (new_w, new_h))
h, w = image.shape[:2]
crop_h, crop_w = 256, 256
start_h = (h - crop_h) // 2
start_w = (w - crop_w) // 2
image = image[start_h:start_h + crop_h, start_w:start_w + crop_w]
return image
def normalize_image(image, resize=True):
"""
H x W x 3(uint8) -> imagenet normalized 3 x H x W
Normalizes image to [-1, 1].
Resizes the image if resize=True or if the image resolution > MAX_RES
"""
image = resize_image(image, resize=resize)
# normalize between -1 and 1
image = image / 255.0
image = (image * 2 - 1.)
return torch.from_numpy(image.transpose(2, 0, 1))
def unnormalize_image(magvit_output):
"""
[-1, 1] -> [0, 255]
Important: clip to [0, 255]
"""
rescaled_output = ((magvit_output.detach().cpu() + 1) * 127.5)
clipped_output = torch.clamp(rescaled_output, 0, 255).to(dtype=torch.uint8)
return clipped_output
@torch.inference_mode()
@torch.no_grad()
def get_quantized_image_embeddings(
image,
encoder_type,
encoder_name_or_path,
keep_res=False,
device="cuda",
):
"""
image: (h, w, 3)
"""
global vision_model
DEBUG = False
dtype = torch.bfloat16
if vision_model is None:
vision_model = get_image_encoder(encoder_type=encoder_type, encoder_name_or_path=encoder_name_or_path)
vision_model = vision_model.to(device=device, dtype=dtype)
vision_model.eval()
batch = normalize_image(image, resize=not keep_res)[None]
if not keep_res:
img_h, img_w = 256, 256
else:
img_h, img_w = batch.shape[2:]
h, w = img_h // 16, img_w // 16
with vision_model.ema_scope():
quant_, _, indices, _ = vision_model.encode(batch.to(device=device, dtype=dtype), flip=True)
indices = rearrange(indices, "(h w) -> h w", h=h, w=w)
# alternative way to get indices
# indices_ = vision_model.quantize.bits_to_indices(quant_.permute(0, 2, 3, 1) > 0).cpu().numpy()
# indices_ = rearrange(indices_, "(h w) -> h w", h=h, w=w)
if DEBUG:
# sanity check: decode and then visualize
with vision_model.ema_scope():
indices = indices[None]
# bit representations
quant = vision_model.quantize.get_codebook_entry(rearrange(indices, "b h w -> b (h w)"),
bhwc=indices.shape + (vision_model.quantize.codebook_dim,)).flip(1)
## why is there a flip(1) needed for the codebook bits?
decoded_img = unnormalize_image(vision_model.decode(quant.to(device=device, dtype=dtype)))
transforms_f.to_pil_image(decoded_img[0]).save("decoded.png")
transforms_f.to_pil_image(image).save("original.png") # show()
# 18 x 16 x 16 of [-1., 1.] - > 16 x 16 uint32
indices = indices.type(torch.int32)
indices = indices.detach().cpu().numpy().astype(np.uint32)
return indices
@torch.inference_mode()
@torch.no_grad()
def get_vae_image_embeddings(
image,
encoder_type,
encoder_name_or_path,
keep_res: bool = False,
device="cuda",
):
"""
image: (h, w, 3), in [-1, 1]
use SD VAE to encode and decode the images.
"""
global vision_model
DEBUG = False
dtype = torch.bfloat16
if vision_model is None:
vision_model = get_image_encoder(encoder_type, encoder_name_or_path)
vision_model = vision_model.to(device=device, dtype=dtype)
vision_model.eval()
# https://github.com/bytedance/IRASim/blob/main/sample/sample_autoregressive.py#L151
# if args.use_temporal_decoder:
# vae = AutoencoderKLTemporalDecoder.from_pretrained(args.vae_model_path, subfolder="t2v_required_models/vae_temporal_decoder").to(device)
# else:
# vae = AutoencoderKL.from_pretrained(args.vae_model_path, subfolder="vae").to(device)
# x = vae.encode(x).latent_dist.sample().mul_(vae.config.scaling_factor) ?
batch = normalize_image(image, resize=not keep_res)[None]
if isinstance(vision_model, AutoencoderKLTemporalDecoder):
# Think SVD expects images in [-1, 1] so we don't have to change anything?
# https://github.com/Stability-AI/generative-models/blob/1659a1c09b0953ad9cc0d480f42e4526c5575b37/scripts/demo/video_sampling.py#L182
# https://github.com/Stability-AI/generative-models/blob/1659a1c09b0953ad9cc0d480f42e4526c5575b37/scripts/demo/streamlit_helpers.py#L894
z = vision_model.encode(batch.to(device=device, dtype=dtype)).latent_dist.mean
elif isinstance(vision_model, VQModel): # vision_model should be VQModel
# with vision_model.ema_scope(): # doesn't matter due to bugged VQModel ckpt_path arg
z = vision_model.encode_without_quantize(batch.to(device=device, dtype=dtype))
else:
raise NotImplementedError(f"{vision_model=}")
if DEBUG:
decoded_img = unnormalize_image(vision_model.decode(z.to(device=device, dtype=dtype)))
transforms_f.to_pil_image(decoded_img[0]).save("decoded_unquant.png")
transforms_f.to_pil_image(image).save("original.png")
return z[0].detach().cpu().float().numpy().astype(np.float16)
# switch to VAE in SD
# https://huggingface.co/stabilityai/stable-diffusion-3.5-large/tree/main/vae
# https://github.com/bytedance/IRASim/blob/main/sample/sample_autoregressive.py#L151
# from diffusers.models import AutoencoderKL,AutoencoderKLTemporalDecoder
# vae_model_path = 'pretrained_models/stabilityai/stable-diffusion-xl-base-1.0'
# if args.use_temporal_decoder:
# vae = AutoencoderKLTemporalDecoder.from_pretrained(vae_model_path, subfolder="t2v_required_models/vae_temporal_decoder").to(device)
# else:
# vae = AutoencoderKL.from_pretrained(vae_model_path, subfolder="vae").to(device)
# z = vae.encode(x).latent_dist.sample().mul_(vae.config.scaling_factor)
# if DEBUG:
# decoded_img = unnormalize_image(vae.decode(z.to(device=device, dtype=dtype) / vae.config.scaling_factor))
# transforms_f.to_pil_image(decoded_img[0]).save("decoded_unquant.png")
# transforms_f.to_pil_image(image).save("original.png")
@torch.no_grad()
def get_t5_embeddings(language, per_token=True, max_length=16, device="cpu"):
"""Get T5 embedding"""
global global_language_model, t5_tok
if global_language_model is None:
try:
t5_model = T5Model.from_pretrained("t5-base")
t5_tok = T5Tokenizer.from_pretrained("t5-base")
except:
t5_model = T5Model.from_pretrained("t5-base", local_files_only=True)
t5_tok = T5Tokenizer.from_pretrained("t5-base", local_files_only=True)
t5_model = t5_model.to(device)
global_language_model = t5_model
global_language_model.eval()
# forward pass through encoder only
enc = t5_tok(
[language],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).to(device)
output = global_language_model.encoder(
input_ids=enc["input_ids"], attention_mask=enc["attention_mask"], return_dict=True
)
torch.cuda.empty_cache()
if per_token:
return output.last_hidden_state[0].detach().cpu().numpy()
else:
# get the final hidden states. average across tokens.
emb = output.last_hidden_state[0].mean(dim=0).detach().cpu().numpy()
return emb
|