Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,022 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import torch
import torch.nn as nn
def count_params(model):
total_params = sum(p.numel() for p in model.parameters())
return total_params
class ActNorm(nn.Module):
def __init__(self, num_features, logdet=False, affine=True,
allow_reverse_init=False):
assert affine
super().__init__()
self.logdet = logdet
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.allow_reverse_init = allow_reverse_init
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
def initialize(self, input):
with torch.no_grad():
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
mean = (
flatten.mean(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
std = (
flatten.std(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
self.loc.data.copy_(-mean)
self.scale.data.copy_(1 / (std + 1e-6))
def forward(self, input, reverse=False):
if reverse:
return self.reverse(input)
if len(input.shape) == 2:
input = input[:,:,None,None]
squeeze = True
else:
squeeze = False
_, _, height, width = input.shape
if self.training and self.initialized.item() == 0:
self.initialize(input)
self.initialized.fill_(1)
h = self.scale * (input + self.loc)
if squeeze:
h = h.squeeze(-1).squeeze(-1)
if self.logdet:
log_abs = torch.log(torch.abs(self.scale))
logdet = height*width*torch.sum(log_abs)
logdet = logdet * torch.ones(input.shape[0]).to(input)
return h, logdet
return h
def reverse(self, output):
if self.training and self.initialized.item() == 0:
if not self.allow_reverse_init:
raise RuntimeError(
"Initializing ActNorm in reverse direction is "
"disabled by default. Use allow_reverse_init=True to enable."
)
else:
self.initialize(output)
self.initialized.fill_(1)
if len(output.shape) == 2:
output = output[:,:,None,None]
squeeze = True
else:
squeeze = False
h = output / self.scale - self.loc
if squeeze:
h = h.squeeze(-1).squeeze(-1)
return h
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class Labelator(AbstractEncoder):
"""Net2Net Interface for Class-Conditional Model"""
def __init__(self, n_classes, quantize_interface=True):
super().__init__()
self.n_classes = n_classes
self.quantize_interface = quantize_interface
def encode(self, c):
c = c[:,None]
if self.quantize_interface:
return c, None, [None, None, c.long()]
return c
class SOSProvider(AbstractEncoder):
# for unconditional training
def __init__(self, sos_token, quantize_interface=True):
super().__init__()
self.sos_token = sos_token
self.quantize_interface = quantize_interface
def encode(self, x):
# get batch size from data and replicate sos_token
c = torch.ones(x.shape[0], 1)*self.sos_token
c = c.long().to(x.device)
if self.quantize_interface:
return c, None, [None, None, c]
return c
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag |