Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,891 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# https://github.com/LTH14/mar/blob/main/models/diffloss.py
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
import math
from .diffusion import create_diffusion
class DiffLoss(nn.Module):
"""Diffusion Loss"""
def __init__(self, target_channels, z_channels, depth, width, num_sampling_steps, grad_checkpointing=False):
super(DiffLoss, self).__init__()
self.in_channels = target_channels
self.net = SimpleMLPAdaLN(
in_channels=target_channels,
model_channels=width,
out_channels=target_channels * 2, # for vlb loss
z_channels=z_channels,
num_res_blocks=depth,
grad_checkpointing=grad_checkpointing
)
self.train_diffusion = create_diffusion(timestep_respacing="", noise_schedule="cosine")
self.gen_diffusion = create_diffusion(timestep_respacing=num_sampling_steps, noise_schedule="cosine")
def forward(self, target, z, mask=None):
t = torch.randint(0, self.train_diffusion.num_timesteps, (target.shape[0],), device=target.device)
model_kwargs = dict(c=z)
loss_dict = self.train_diffusion.training_losses(self.net, target, t, model_kwargs)
loss = loss_dict["loss"]
if mask is not None:
loss = (loss * mask).sum() / (mask.sum() + 1e-8)
return loss.mean()
def sample(self, z, temperature=1.0, cfg=1.0, clip_denoised=False):
# diffusion loss sampling
if not cfg == 1.0:
noise = torch.randn(z.shape[0] // 2, self.in_channels).cuda()
noise = torch.cat([noise, noise], dim=0)
model_kwargs = dict(c=z, cfg_scale=cfg)
sample_fn = self.net.forward_with_cfg
else:
noise = torch.randn(z.shape[0], self.in_channels).cuda()
model_kwargs = dict(c=z)
sample_fn = self.net.forward
sampled_token_latent = self.gen_diffusion.p_sample_loop(
sample_fn, noise.shape, noise, clip_denoised=clip_denoised, model_kwargs=model_kwargs, progress=False,
temperature=temperature
)
return sampled_token_latent
def modulate(x, shift, scale):
return x * (1 + scale) + shift
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class ResBlock(nn.Module):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
"""
def __init__(
self,
channels
):
super().__init__()
self.channels = channels
self.in_ln = nn.LayerNorm(channels, eps=1e-6)
self.mlp = nn.Sequential(
nn.Linear(channels, channels, bias=True),
nn.SiLU(),
nn.Linear(channels, channels, bias=True),
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(channels, 3 * channels, bias=True)
)
def forward(self, x, y):
shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(y).chunk(3, dim=-1)
h = modulate(self.in_ln(x), shift_mlp, scale_mlp)
h = self.mlp(h)
return x + gate_mlp * h
class FinalLayer(nn.Module):
"""
The final layer adopted from DiT.
"""
def __init__(self, model_channels, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(model_channels, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(model_channels, out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(model_channels, 2 * model_channels, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class SimpleMLPAdaLN(nn.Module):
"""
The MLP for Diffusion Loss.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param z_channels: channels in the condition.
:param num_res_blocks: number of residual blocks per downsample.
"""
def __init__(
self,
in_channels,
model_channels,
out_channels,
z_channels,
num_res_blocks,
grad_checkpointing=False
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.grad_checkpointing = grad_checkpointing
self.time_embed = TimestepEmbedder(model_channels)
self.cond_embed = nn.Linear(z_channels, model_channels)
self.input_proj = nn.Linear(in_channels, model_channels)
res_blocks = []
for i in range(num_res_blocks):
res_blocks.append(ResBlock(
model_channels,
))
self.res_blocks = nn.ModuleList(res_blocks)
self.final_layer = FinalLayer(model_channels, out_channels)
self.initialize_weights()
def initialize_weights(self):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight, gain=0.1) # gain=1
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02)
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers
for block in self.res_blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, c):
"""
Apply the model to an input batch.
:param x: an [N x C] Tensor of inputs.
:param t: a 1-D batch of timesteps.
:param c: conditioning from AR transformer.
:return: an [N x C] Tensor of outputs.
"""
x = self.input_proj(x)
t = self.time_embed(t)
c = self.cond_embed(c)
y = t + c
if self.grad_checkpointing and not torch.jit.is_scripting():
for block in self.res_blocks:
x = checkpoint(block, x, y)
else:
for block in self.res_blocks:
x = block(x, y)
return self.final_layer(x, y)
def forward_with_cfg(self, x, t, c, cfg_scale):
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, c)
eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1) |