Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,857 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
#https://github.com/LTH14/mar/tree/main/
from functools import partial
import numpy as np
from tqdm import tqdm
import scipy.stats as stats
import math
import torch
import torch.nn as nn
from einops import rearrange
import mup
from genie.config import DiffusionGenieConfig
from .diffloss import DiffLoss
from .st_mask_git import STMaskGIT
from transformers.utils import ModelOutput
def mask_by_order(mask_len, order, bsz, seq_len):
masking = torch.zeros(bsz, seq_len).cuda()
masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len).cuda()).bool()
return masking
class FixedMuReadout(mup.MuReadout):
def forward(self, x):
"""
Using `return super(mup.MuReadout, self).forward(self.output_mult * x / self.width_mult())` with `torch.compile`
results in two divisions by `self.width_mult()` for some reason
"""
# return F.linear(self.output_mult * x / self.width_mult(), self.weight, self.bias) # equivalent
return nn.Linear.forward(self, self.output_mult * x / self.width_mult())
class STMAR(STMaskGIT):
""" Spatial-Time MAR with VisionTransformer backbone
"""
def __init__(self, config: DiffusionGenieConfig):
self.diffloss_w = config.diffloss_w
self.diffloss_d = config.diffloss_d
self.num_sampling_steps = config.num_sampling_steps
self.grad_checkpointing = config.grad_checkpointing
# --------------------------------------------------------------------------
# VAE and patchify specifics
self.patch_size = config.patch_size
self.vae_stride = config.vae_stride
self.buffer_size = config.buffer_size
self.vae_embed_dim = config.vae_embed_dim
self.maskgit_steps = config.maskgit_steps
super().__init__(config)
# --------------------------------------------------------------------------
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.vae_embed_dim))
self.token_embed = nn.Linear(config.vae_embed_dim * self.config.patch_size ** 2, config.d_model, bias=False) # hard coded
cls = FixedMuReadout if config.use_mup else nn.Linear # (Fixed)MuReadout might slow dow down compiled training?
self.out_x_proj = cls(config.d_model, config.d_model)
self.decoder_norm = nn.LayerNorm(config.d_model, eps=1e-6)
self.z_proj_ln = nn.LayerNorm(config.d_model, eps=1e-6)
self.seq_len = config.S // (self.config.patch_size ** 2)
self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len * config.T, config.d_model))
# --------------------------------------------------------------------------
# Diffusion Loss
self.diffloss = DiffLoss(
target_channels=config.vae_embed_dim * self.config.patch_size ** 2,
z_channels=config.d_model,
width=config.diffloss_w,
depth=config.diffloss_d,
num_sampling_steps=config.num_sampling_steps,
grad_checkpointing=config.grad_checkpointing
)
# print(self.config.init_actions, self.config.use_actions, self.config.action_domains is not None)
self.diffusion_batch_mul = config.diffusion_batch_mul
self.initialize_weights()
def init_action_projectors(
self,
domains: list[str],
d_actions: list[int],
action_stats: list[list[list[float]]],
action_network: str = "mlp",
):
super().init_action_projectors(domains, d_actions, action_stats, action_network, use_diffusion=True)
self.action_diff_losses = nn.ModuleDict()
# action heads are heterogeneous
for domain, d_action in zip(self.config.action_domains, self.config.d_actions):
self.action_diff_losses[domain] = DiffLoss(
target_channels=d_action,
z_channels=self.config.d_model,
width=self.diffloss_w,
depth=self.diffloss_d,
num_sampling_steps=self.num_sampling_steps,
grad_checkpointing=self.grad_checkpointing
)
def initialize_weights(self):
# initialize nn.Linear and nn.LayerNorm parameters
torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)
self.init_weights()
def set_mup_shapes(self, rescale_params=False):
base_config = self.config.shallow_copy()
base_config.num_heads = 8
base_config.d_model = 256 # currently hardcoding to this shape
base_model = STMAR(base_config)
if hasattr(self, "action_preprocessor"):
for base_layer, layer in zip(base_model.decoder.layers, self.decoder.layers):
base_layer.action_projectors = layer.action_projectors
base_model.action_preprocessor = self.action_preprocessor
mup.set_base_shapes(self, base_model, rescale_params=rescale_params)
def compute_action_loss_and_acc(self, z, target, domain, mask = None):
bsz, seq_len, *_ = target.shape
# not so sure if this repeated is needed
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
if mask is not None:
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
loss = self.action_diff_losses[domain[0]](z=z, target=target, mask=mask) #
acc = torch.zeros_like(loss)
return loss, acc
def compute_video_loss_and_acc(self, z, target, mask = None):
z = rearrange(z, "B C T H W -> B (T H W) C").float()
target = rearrange(target, "B T H W C -> B (T H W) C").float()
bsz, seq_len, *_ = target.shape
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
if mask is not None:
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
loss = self.diffloss(z=z, target=target, mask=mask) # no need for
acc = torch.zeros_like(loss)
return loss, acc
def compute_latents(self, x_THW, action_ids: torch.Tensor = None, domain=None, action_mask=None, **kwargs):
# x_THW is for z0,...,zT while x_targets is z1,...,zT
pos_embed_TSC = self.pos_embed_TSC
diffusion_pos_embed_learned = self.diffusion_pos_embed_learned
b, t, h, w, c = x_THW.shape
x_TSC = rearrange(x_THW, "B T H W C -> B T (H W) C").float()
x_TSC = self.token_embed(x_TSC)
T = x_TSC.shape[1]
if action_ids is not None:
# currently, action_preprocessor just normalizes the actions
skip_normalization = kwargs.get("skip_normalization", False)
if not skip_normalization:
action_ids = self.action_preprocessor[domain[0]](action_ids)
action_ids = self.action_mlp[domain[0]](action_ids) # [B, T, D]
if "concat" in self.config.action_network:
# randomly dropped the conditioning
if self.config.action_network == "resampler_concat":
action_condition = self.action_projectors[domain[0]](action_ids[:, :T])
else:
action_condition = action_ids[:, :T, None].repeat(1, 1, self.config.action_token_size, 1) # [B, T, S, C]
# we add masked tokens between 0 (fully unmasked as in video pred) and 1 (fully masked as in policies) for training losses
# if we have actions and are trying to predict actions
# if self.config.jointly_predict_actions and action_mask is not None:
# action_condition = action_mask * self.action_mask_tokens[:, :T] + (1 - action_mask) * action_condition
x_TSC = torch.concat((x_TSC, action_condition), dim=2) # [B, T, S, C]
elif self.config.jointly_predict_actions:
# all masked when predicting actions and there is no input actions
action_condition = self.action_mask_tokens[:, :T].repeat(1, 1, self.config.action_token_size, 1)
x_TSC = torch.concat((x_TSC, action_condition), dim=2) # [B, T, S, C]
x_TSC = self.z_proj_ln(x_TSC + pos_embed_TSC[:, :x_TSC.shape[1], :x_TSC.shape[2]])
# additive position embeddings, using the same vocab space
domain = domain[0] if domain is not None else None
x_TSC = self.decoder(x_TSC, action_ids=action_ids, domain=domain)
# dummy if are not used
decoded_states = rearrange(diffusion_pos_embed_learned, "B (T H W) C -> B C T H W", T=self.config.T, H=h, W=w)
decoded_actions = None
if self.config.jointly_predict_actions:
decoded_actions = x_TSC[:, :, -self.config.action_token_size:].mean(dim=2) # pool all tokens
# if self.config.jointly_predict_states:
x_TSC = x_TSC[:, :, :h*w] # remove action tokens
x_next_TSC = self.decoder_norm(self.out_x_proj(x_TSC))
x_next_TSC = x_next_TSC + diffusion_pos_embed_learned.view(1, self.config.T, h*w, self.config.d_model)[:,:T]
decoded_states = rearrange(x_next_TSC, "B T (H W) C -> B C T H W", H=h, W=w)
return decoded_states, decoded_actions
def patchify(self, x):
bsz, t, h, w, c = x.shape
p = self.patch_size
h_, w_ = h // p, w // p
x = x.reshape(bsz, t, h_, p, w_, p, c)
x = torch.einsum('nthpwqc->nthwpqc', x)
x = x.reshape(bsz, t, h_, w_, c * p ** 2)
return x
def unpatchify(self, x):
# input: B T H W C
p = self.patch_size
bsz, t, h, w, _ = x.shape
c = self.vae_embed_dim
x = x.reshape(bsz, t, h, w, p, p, c)
x = torch.einsum('nthwpqc->nthpwqc', x)
x = x.reshape(bsz, t, h * p, w * p, c)
return x
def forward(self, input_ids, labels, action_ids=None, domain="default", **kwargs):
assert "masked_tokens_indicator" in kwargs
relevant_mask = kwargs["masked_tokens_indicator"]
# class embed
T, H, W = self.config.T, self.h, self.w
if "h" in kwargs:
H = kwargs["h"][0]
if "w" in kwargs:
W = kwargs["w"][0]
x_THW = rearrange(input_ids, "B (T H W) C -> B T H W C", T=T, H=H, W=W)
action_mask = None
if action_ids is not None and self.config.jointly_predict_actions:
action_labels = action_ids.clone()
action_mask = torch.zeros(len(action_ids), T, 1)
random_timesteps = torch.randint(0, T, (len(action_ids), 1), device=action_ids.device)
# Set all timesteps from the sampled t to T to 1
for i, t in enumerate(random_timesteps):
action_mask[i, t:] = 1
# Move the mask to the same device and dtype as x_THW if needed
action_mask = action_mask.unsqueeze(-1).cuda().to(x_THW.dtype)
# change masked token id -> masked token latents
x_THW[relevant_mask] = self.mask_token
x_THW = self.patchify(x_THW)
latents_CTHW, action_outputs = self.compute_latents(x_THW, action_ids=action_ids, domain=domain, action_mask=action_mask, **kwargs)
labels = rearrange(labels, "B (T H W) C -> B T H W C", T=T, H=H, W=W)
labels = self.patchify(labels)
relevant_loss = torch.zeros(1).to(x_THW.device)
relevant_acc = torch.zeros(1).to(x_THW.device)
relevant_mask = self.patchify(relevant_mask[...,None]).sum(-1) > 0 # as long as it's not no mask
# Record the loss over masked tokens only to make it more comparable to LLM baselines
if self.config.jointly_predict_states:
# could also get mask of corrupted tokens by uncommenting line in `get_maskgit_collator`
relevant_loss, relevant_acc = self.compute_video_loss_and_acc(latents_CTHW, labels, relevant_mask) # relevant_mask
# compute the action losses
if action_outputs is not None:
action_loss, _ = self.compute_action_loss_and_acc(action_outputs, action_labels, domain, action_mask)
return ModelOutput(loss=relevant_loss, acc=relevant_acc, logits=latents_CTHW, action_loss=action_loss, actions=action_outputs)
return ModelOutput(loss=relevant_loss, acc=relevant_acc, logits=latents_CTHW)
def generate(
self,
input_ids: torch.LongTensor,
attention_mask: torch.LongTensor,
max_new_tokens: int,
min_new_tokens: int = None,
return_logits: int = False,
return_with_actions: bool = False,
temperature: float = 1.0,
action_ids: torch.Tensor = None,
domain: str = "default",
action_only: bool = False,
state_only: bool = False,
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
"""
Args designed to match the format of Llama.
We ignore `attention_mask`, and use `max_new_tokens` to determine the number of frames to generate.
Returns: `(sample_THW, factored_logits)` if `return_logits` else `sample_THW`
sample_THW: size (B, num_new_frames * H * W) corresponding to autoregressively generated
unfactorized token ids for future frames.
Optionally, factored_logits: size (B, factored_vocab_size, num_factored_vocabs, num_new_frames, H, W).
"""
assert min_new_tokens in (None, max_new_tokens), \
"Expecting `min_new_tokens`, if specified, to match `max_new_tokens`."
# assert max_new_tokens % self.config.S == 0, "Expecting `max_new_tokens` to be a multiple of `self.config.S`."
h, w, c = self.h, self.w, self.vae_embed_dim
if "h" in kwargs:
h = kwargs["h"][0]
if "w" in kwargs:
w = kwargs["w"][0]
S = h*w
num_new_frames = max_new_tokens // S
inputs_THW = rearrange(input_ids.clone(), "b (t h w) c-> b t h w c", h=h, w=w)
inputs_masked_THW = torch.cat([
inputs_THW,
self.mask_token[None, None].repeat(inputs_THW.size(0), num_new_frames, h, w, 1)
], dim=1)
all_factored_logits = []
for timestep in range(inputs_THW.size(1), inputs_THW.size(1) + num_new_frames):
# could change sampling hparams
sample_HW, factored_logits, actions = self.maskgit_generate(
inputs_masked_THW,
timestep,
maskgit_steps=self.maskgit_steps,
temperature=temperature,
action_ids=action_ids,
domain=domain,
action_only=action_only,
state_only=state_only,
**kwargs
)
inputs_masked_THW[:, timestep] = sample_HW
all_factored_logits.append(factored_logits)
predicted_tokens = rearrange(inputs_masked_THW, "B T H W C -> B (T H W) C")
if return_with_actions:
# unnormalize actions
actions = self.action_preprocessor[domain[0]].unnormalize(actions)
return predicted_tokens, actions
elif return_logits:
return predicted_tokens, torch.stack(all_factored_logits, dim=3) # (b, c, num_new_frames, h, w)
else:
return predicted_tokens
def sample_orders(self, bsz):
# generate a batch of random generation orders
orders = []
for _ in range(bsz):
order = np.array(list(range(self.seq_len)))
np.random.shuffle(order)
orders.append(order)
orders = torch.Tensor(np.array(orders)).cuda().long()
return orders
@torch.no_grad()
def maskgit_generate(
self,
prompt_THW,
out_t: int,
unmask_mode: str = "random",
action_ids=None,
domain="default",
maskgit_steps=8,
cfg=1.0,
temperature=1.0,
cfg_schedule="linear",
action_only: bool = False,
state_only: bool = False,
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
# init and sample generation orders
assert out_t, "maskgit_generate requires out_t > 0"
prompt_THW = self.patchify(prompt_THW)
bs, t, h, w = prompt_THW.size(0), prompt_THW.size(1), prompt_THW.size(2), prompt_THW.size(3)
S = h * w
orders = self.sample_orders(bs) # random order
sampled_action_token_latent = None
# this will be modified in place on each iteration of this loop
unmasked = self.init_mask(prompt_THW)
# patchify the prompt
latents_CTHW, action_outputs = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CTHW[:, :, out_t]
orig_latents_CHW = latents_CHW.clone()
# Return these original logits, not logits after partially sampling.
for step in range(maskgit_steps):
# Perform a single maskgit step (cosine schedule), updating unmasked in-place
if step > 0: # recompute logits with updated prompt
latents_CHW, action_outputs = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CHW[:, :, out_t]
# mask ratio for the next round, following MaskGIT and MAGE.
mask_ratio = np.cos(math.pi / 2. * (step + 1) / maskgit_steps)
mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).cuda()
# masks out at least one for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).cuda(),
torch.minimum(torch.sum(~unmasked, dim=-1, keepdims=True) - 1, mask_len))
# get masking for next iteration and locations to be predicted in this iteration
mask_next = mask_by_order(mask_len[0], orders, bs, self.seq_len)
mask = ~unmasked
if step >= maskgit_steps - 1:
mask_to_pred = mask[:bs].bool() # last step
else:
mask_to_pred = torch.logical_xor(mask[:bs].bool(), mask_next.bool())
mask = mask_next
if not cfg == 1.0:
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)
# sample token latents for this step
latents_CHW = rearrange(latents_CHW, "b c h w -> b (h w) c")
latents_CHW = latents_CHW[mask_to_pred.nonzero(as_tuple=True)]
# copy previously unmasked values from prompt input into sample
# cfg schedule follow Muse
total_mask_len = unmasked.shape[1]
if cfg_schedule == "linear":
cfg_iter = 1 + (cfg - 1) * (total_mask_len - unmasked.sum()) / total_mask_len
elif cfg_schedule == "constant":
cfg_iter = cfg
else:
raise NotImplementedError
# need to reshape back
sampled_token_latent = self.diffloss.sample(latents_CHW.contiguous(), temperature, cfg_iter, clip_denoised=True)
if not cfg == 1.0:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) # Remove null class samples
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)
if action_outputs is not None and self.config.jointly_predict_actions:
sampled_action_token_latent = self.action_diff_losses[domain[0]].sample(action_outputs.view(-1, action_outputs.shape[-1]),
temperature, cfg_iter, clip_denoised=True)
if not cfg == 1.0:
sampled_action_token_latent, _ = sampled_action_token_latent.chunk(2, dim=0)
prompt_THW_reshape = rearrange(prompt_THW, "B T H W C -> B T (H W) C")
prompt_THW_reshape[:, out_t][mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
prompt_THW = rearrange(prompt_THW_reshape, "B T (H W) C -> B T H W C", H=h, W=w)
# Return the final sample and logits
prompt_THW = self.unpatchify(prompt_THW)
return prompt_THW[:, out_t], orig_latents_CHW, sampled_action_token_latent
@torch.no_grad()
def maskgit_generate_horizon(
self,
prompt_THW,
out_t_min: int,
out_t_max: int,
unmask_mode: str = "random",
action_ids=None,
domain="default",
maskgit_steps=8,
cfg=1.0,
temperature=1.0,
cfg_schedule="linear",
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
# init and sample generation orders
prompt_THW = self.patchify(prompt_THW)
bs, t, h, w = prompt_THW.size(0), prompt_THW.size(1), prompt_THW.size(2), prompt_THW.size(3)
S = h * w
orders = self.sample_orders(bs) # random order
# this will be modified in place on each iteration of this loop
horizon = out_t_max - out_t_min
unmasked = self.init_mask(prompt_THW, t=horizon)
# patchify the prompt
latents_CTHW, latents_actions = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CTHW[:, :, out_t_min:out_t_max]
orig_latents_CHW = latents_CHW.clone()
# Return these original logits, not logits after partially sampling.
seq_len = horizon * self.seq_len
for step in (range(maskgit_steps)):
# Perform a single maskgit step (cosine schedule), updating unmasked in-place
if step > 0: # recompute logits with updated prompt
latents_CHW, latents_actions = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CHW[:, :, out_t_min:out_t_max]
# mask ratio for the next round, following MaskGIT and MAGE.
mask_ratio = np.cos(math.pi / 2. * (step + 1) / maskgit_steps)
mask_len = torch.Tensor([np.floor(seq_len * mask_ratio)]).cuda()
# masks out at least one for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).cuda(),
torch.minimum(torch.sum(~unmasked, dim=-1, keepdims=True) - 1, mask_len))
# get masking for next iteration and locations to be predicted in this iteration
mask_next = mask_by_order(mask_len[0], orders, bs, seq_len)
mask = ~unmasked
if step >= maskgit_steps - 1:
mask_to_pred = mask[:bs].bool() # last step
else:
mask_to_pred = torch.logical_xor(mask[:bs].bool(), mask_next.bool())
mask = mask_next
if not cfg == 1.0:
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)
# sample token latents for this step
latents_CHW = rearrange(latents_CHW, "b c t h w -> b (t h w) c")
latents_CHW = latents_CHW[mask_to_pred.nonzero(as_tuple=True)]
# copy previously unmasked values from prompt input into sample
# cfg schedule follow Muse
total_mask_len = unmasked.shape[1]
if cfg_schedule == "linear":
cfg_iter = 1 + (cfg - 1) * (total_mask_len - unmasked.sum()) / total_mask_len
elif cfg_schedule == "constant":
cfg_iter = cfg
else:
raise NotImplementedError
# need to reshape back
sampled_token_latent = self.diffloss.sample(latents_CHW.contiguous(), temperature, cfg_iter)
if not cfg == 1.0:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) # Remove null class samples
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)
if latents_actions is not None and self.config.jointly_predict_actions:
action_outputs = self.action_diff_losses[domain[0]].sample(latents_actions.view(-1, latents_actions.shape[-1]),
temperature, cfg_iter)
if not cfg == 1.0:
action_outputs, _ = action_outputs.chunk(2, dim=0)
# need to reshape backout_t_max - out_t_min_latent.chunk(2, dim=0)
prompt_THW_reshape = rearrange(prompt_THW[:, out_t_min:out_t_max], "B T H W C -> B (T H W) C")
prompt_THW_reshape[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
prompt_THW[:, out_t_min:out_t_max] = rearrange(prompt_THW_reshape.clone(), "B (T H W) C -> B T H W C", T=horizon, H=h, W=w)
# Return the final sample and logits
prompt_THW = self.unpatchify(prompt_THW)
return prompt_THW[:, out_t_min:out_t_max], orig_latents_CHW, action_outputs
|