Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,859 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
#!/usr/bin/env python3
"""
Script to decode tokenized video into images/video.
Example usage: See https://github.com/1x-technologies/1xgpt?tab=readme-ov-file#1x-genie-baseline
"""
import argparse
import math
import os
from PIL import Image, ImageDraw
import numpy as np
import torch
import torch.distributed.optim
import torch.utils.checkpoint
import torch.utils.data
import torchvision.transforms.v2.functional as transforms_f
from diffusers import AutoencoderKLTemporalDecoder
from einops import rearrange
from matplotlib import pyplot as plt
from cont_data import RawFeatureDataset
from data import RawTokenDataset
from datasets.utils import get_image_encoder
from magvit2.config import VQConfig
from magvit2.models.lfqgan import VQModel
from common.eval_utils import decode_tokens, decode_features
import wandb
wandb.login(key='4c1540ebf8cb9964703ac212a937c00848a79b67')
SVD_SCALE = 0.18215
def parse_args():
parser = argparse.ArgumentParser(description="Visualize tokenized video as GIF or comic.")
parser.add_argument(
"--stride",
type=int,
default=1,
help="Frame skip",
)
parser.add_argument(
"--token_dir",
type=str,
default="data/genie_generated",
help="Directory of tokens, in the format of `video.bin` and `metadata.json`. "
"Visualized gif and comic will be written here.",
)
parser.add_argument(
"--offset", type=int, default=0, help="Offset to start generating images from"
)
parser.add_argument(
"--fps", type=int, default=2, help="Frames per second"
)
parser.add_argument(
"--max_images", type=int, default=None, help="Maximum number of images to generate. None for all."
)
parser.add_argument(
"--example_ind", type=int, default=0,
help="The index in the dataset of the example to generate on."
)
parser.add_argument(
"--project_prefix", type=str, default="", help="Project suffix."
)
parser.add_argument(
"--disable_comic", action="store_true",
help="Comic generation assumes `token_dir` follows the same format as generate: e.g., "
"`prompt | predictions | gtruth` in `video.bin`, `window_size` in `metadata.json`."
"Therefore, comic should be disabled when visualizing videos without this format, such as the dataset."
)
parser.add_argument(
"--batch_size", type=int, default=4,
help="Batch size, current script only supports a single GPU."
)
parser.add_argument(
"--max_example", type=int, default=4,
help="Maximum number of examples."
)
parser.add_argument(
"--use_feature", action="store_true",
help="visualize the features rather than tokens"
)
args = parser.parse_args()
return args
def export_to_gif(frames: list, output_gif_path: str, fps: int):
"""
Export a list of frames to a GIF.
Args:
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- output_gif_path (str): Path to save the output GIF.
- fps (int): Desired frames per second.
"""
# Convert numpy arrays to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(
frame, np.ndarray) else frame for frame in frames]
duration_ms = 1000 / fps
pil_frames[0].save(output_gif_path.replace(".mp4", ".gif"),
format="GIF",
append_images=pil_frames[1:],
save_all=True,
duration=duration_ms,
loop=0)
# return the gif
return output_gif_path.replace(".mp4", ".gif")
def unnormalize_imgs(normalized_imgs):
"""
[-1, 1] -> [0, 255]
Important: clip to [0, 255]
"""
normalized_imgs = torch.clamp(normalized_imgs, -1, 1)
rescaled_output = ((normalized_imgs.detach().cpu() + 1) * 127.5)
clipped_output = torch.clamp(rescaled_output, 0, 255).to(dtype=torch.uint8)
return clipped_output
# rescaled_output = ((normalized_imgs.detach().cpu() + 1) * 127.5)
# clipped_output = torch.clamp(rescaled_output, 0, 255).to(dtype=torch.uint8)
# return clipped_output
def decode_latents_wrapper(
batch_size: int = 16,
encoder_type: str = "magvit",
encoder_name_or_path: str = "data/magvit2.ckpt",
max_images: int = None,
device: str = "cuda",
):
dtype = torch.bfloat16 # torch.bfloat16
model = get_image_encoder(encoder_type, encoder_name_or_path)
model = model.to(device=device, dtype=dtype)
@torch.no_grad()
def decode_latents(video_data: np.array):
"""
video_data: (b, h, w) for quantized data, or (b, c, h, w) for continuous data,
where b is `batch_size` and different from training/eval batch size.
"""
decoded_imgs = []
for shard_ind in range(math.ceil(len(video_data) / batch_size)):
shard_data = video_data[shard_ind * batch_size: (shard_ind + 1) * batch_size]
if isinstance(model, VQModel): # TODO: class agnostic wrapper
# expecting quantized
assert shard_data.ndim == 3, f"{shard_data.shape=} {shard_data.dtype=}"
torch_shard = torch.from_numpy(shard_data.astype(np.int64))
# if model.use_ema: # EMA does nothing in bugged VQModel
# with model.ema_scope():
quant = model.quantize.get_codebook_entry(rearrange(torch_shard, "b h w -> b (h w)"),
bhwc=torch_shard.shape + (model.quantize.codebook_dim,)).flip(1)
normalized_imgs = model.decode(quant.to(device=device, dtype=dtype))
elif isinstance(model, AutoencoderKLTemporalDecoder):
# expecting continuous
assert shard_data.ndim == 4, f"{shard_data.shape=} {shard_data.dtype=}"
torch_shard = torch.from_numpy(shard_data)
# manual clip
# if torch_shard.shape[0] == 16:
# print("prompt torch_shard", torch_shard[:4, 0].min(), torch_shard[:4, 0].max(), torch_shard[:4, 0].mean(), torch_shard[:4, 0].std())
# print("pred torch_shard", torch_shard[4:12, 0].min(), torch_shard[4:12, 0].max(), torch_shard[4:12, 0].mean(), torch_shard[4:12, 0].std())
# print("groundtruth torch_shard", torch_shard[12:, 0].min(), torch_shard[12:, 0].max(), torch_shard[12:, 0].mean(), torch_shard[12:, 0].std())
torch_shard = torch.clamp(torch_shard, -25, 25)
normalized_imgs = model.decode(torch_shard.to(device=device, dtype=dtype), num_frames=1).sample # sample to mean
# if torch_shard.shape[0] == 16:
# print("prompt normalized_imgs", normalized_imgs[:4, 0].min(), normalized_imgs[:4, 0].max(), normalized_imgs[:4, 0].mean(), normalized_imgs[:4, 0].std())
# print("pred normalized_imgs", normalized_imgs[4:12, 0].min(), normalized_imgs[4:12, 0].max(), normalized_imgs[4:12, 0].mean(), normalized_imgs[4:12, 0].std())
# print("groundtruth normalized_imgs", normalized_imgs[12:, 0].min(), normalized_imgs[12:, 0].max(), normalized_imgs[12:, 0].mean(), normalized_imgs[12:, 0].std())
else:
raise NotImplementedError(f"{model=}")
decoded_imgs.append(unnormalize_imgs(normalized_imgs))
if max_images and len(decoded_imgs) * batch_size >= max_images:
break
return [transforms_f.to_pil_image(img) for img in torch.cat(decoded_imgs)]
return decode_latents
def caption_image(pil_image: Image, caption: str):
"""
Add a bit of empty space at the top, and add the caption there
"""
border_size = 36
font_size = 24
# convert pil_image to PIL.Image.Image if it's not already
if not isinstance(pil_image, Image.Image):
pil_image = transforms_f.to_pil_image(pil_image)
width, height = pil_image.size
new_width = width
new_height = height + border_size
new_image = Image.new("RGB", (new_width, new_height), "white")
new_image.paste(pil_image, (0, border_size))
# Draw the caption
draw = ImageDraw.Draw(new_image)
# Center text (`align` keyword doesn't work)
_, _, text_w, text_h = draw.textbbox((0, 0), caption, font_size=font_size)
draw.text(((width - text_w) / 2, (border_size - text_h) / 2), caption, fill="black", font_size=font_size)
return new_image
@torch.no_grad()
def main():
args = parse_args()
name = args.token_dir.split('/')[-2]
name_split = name.find('nodes')
model = name[:name_split-7]
dataset = name[name_split+8:]
# Load tokens
if args.use_feature:
token_dataset = RawFeatureDataset(args.token_dir, 1, compute_stride_from_freq_table=False,
filter_interrupts=False, filter_overlaps=False)
video_tokens = token_dataset.data
print(f"Loaded {video_tokens.shape=}")
else:
token_dataset = RawTokenDataset(args.token_dir, 1, compute_stride_from_freq_table=False,
filter_interrupts=False, filter_overlaps=False)
video_tokens = token_dataset.data
print(f"Loaded {video_tokens.shape=}")
metadata = token_dataset.metadata
video_tokens = video_tokens.reshape(-1, metadata["window_size"] * 2 - metadata["num_prompt_frames"], *video_tokens.shape[1:])
decode_func = decode_latents_wrapper
print(metadata)
print(f"Reshape {video_tokens.shape=}")
wandb.init(project='video_eval_vis', settings=wandb.Settings(start_method="thread"), name=f"{args.project_prefix}vis_{model}", id=f"{args.project_prefix}vis_{model}", resume="allow")
for example_id in range(min(args.max_example, len(video_tokens))):
if args.use_feature:
if "encoder_type" not in metadata:
metadata["encoder_type"] = "temporalvae"
metadata["encoder_name_or_path"] = "stabilityai/stable-video-diffusion-img2vid"
decode_latents = decode_func(max_images=args.max_images, encoder_name_or_path=metadata["encoder_name_or_path"],
encoder_type=metadata["encoder_type"]) # args.offset::args.stride
this_video_token = torch.FloatTensor(video_tokens[example_id].copy())[None] / SVD_SCALE
this_video_token = rearrange(this_video_token, "b t c h w -> b t h w c")
video_frames = decode_features(this_video_token, decode_latents)
video_frames = rearrange(video_frames, "b t c h w -> b t h w c")
video_frames = video_frames.detach().cpu().numpy()[0].astype(np.uint8)
else:
decode_latents = decode_func(max_images=args.max_images)
this_video_token = torch.LongTensor(video_tokens[example_id])[None]
video_frames = decode_tokens(this_video_token, decode_latents)
video_frames = rearrange(video_frames, "b t c h w -> b t h w c")
video_frames = video_frames.detach().cpu().numpy()[0].astype(np.uint8)
output_gif_path = os.path.join(args.token_dir, f"example{args.offset}.gif")
# `generate` should populate `metadata.json` with these keys, while ground truth metadata does not have them
is_generated_data = all(key in metadata for key in ("num_prompt_frames", "window_size"))
if is_generated_data:
if video_tokens[example_id].shape[0] != metadata["window_size"] * 2 - metadata["num_prompt_frames"]:
raise ValueError(f"Unexpected {video_tokens.shape=} given {metadata['window_size']=}, {metadata['num_prompt_frames']=}")
captioned_frames = []
for i, frame in enumerate(video_frames):
if i < metadata["num_prompt_frames"]:
caption = "Prompt"
elif i < metadata["window_size"]:
caption = "Generated"
else:
caption = "Ground truth"
captioned_frames.append(caption_image(frame, caption))
else:
# Leave ground truth frames uncaptioned
captioned_frames = video_frames
gif_path = export_to_gif(captioned_frames, output_gif_path, args.fps)
print(f"Saved to {output_gif_path}")
if not args.disable_comic:
fig, axs = plt.subplots(nrows=2, ncols=metadata["window_size"], figsize=(3 * metadata["window_size"], 3 * 2))
for i, image in enumerate(video_frames):
if i < metadata["num_prompt_frames"]:
curr_axs = [axs[0, i], axs[1, i]]
title = "Prompt"
elif i < metadata["window_size"]:
curr_axs = [axs[0, i]]
title = "Prediction"
else:
curr_axs = [axs[1, i - metadata["window_size"] + metadata["num_prompt_frames"]]]
title = "Ground truth"
for ax in curr_axs:
ax.set_title(title)
ax.imshow(image)
ax.axis("off")
output_comic_path = os.path.join(args.token_dir, f"example{args.offset}.png")
plt.savefig(output_comic_path, bbox_inches="tight")
plt.close()
print(f"Saved to {output_comic_path}")
wandb.log({f"{dataset}/gif_{example_id}": wandb.Video(gif_path)})
# add wandb logging
# wandb.log({f"{dataset}/comic_{args.example_ind}": wandb.Image(output_comic_path)})
wandb.run.summary["model_checkpoint"] = metadata["model_checkpoint"]
wandb.run.summary["dataset"] = metadata["dataset"]
wandb.run.summary["trained_steps"] = metadata["trained_steps"]
wandb.finish()
if __name__ == "__main__":
main()
|