Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,792 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# --------------------------------------------------------
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import numpy as np
from robomimic.envs.env_robosuite import EnvRobosuite
import os
import IPython
import robomimic.utils.file_utils as FileUtils
import robomimic.utils.env_utils as EnvUtils
import robomimic.utils.obs_utils as ObsUtils
from matplotlib import pyplot as plt
import torch
import h5py
from tqdm import tqdm
from sim.robomimic.robomimic_wrapper import RobomimicLowdimWrapper
import cv2
import sys
from collections import OrderedDict
import traceback
OBS_KEYS = ["object", "robot0_eef_pos", "robot0_eef_quat", "robot0_gripper_qpos"]
RESOLUTION = (128, 128)
global_idx = 0
if sys.platform == "linux" and os.getenv("DISPLAY") is None:
try:
from pyvirtualdisplay import Display
import signal
def handler(signum, frame):
raise TimeoutError("Timeout while starting virtual display")
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)
virtual_display = Display(visible=0, size=(1400, 900))
virtual_display.start()
signal.alarm(0)
except Exception as e:
print(f"When instantiate pyvirtualdisplay: {e}")
def render_step(env, state):
env.env.env.sim.set_state_from_flattened(state)
env.env.env.sim.forward()
img = env.render()
img = cv2.resize(img, RESOLUTION)
return img
def convert_img_dataset(
dataset_dir="data/robomimic/datasets", env_names=None, gui=False, episode_num_pertask=2000, **kwargs
):
# convert to a list of episodes that can be added to replay buffer
for env_name in env_names:
dataset_dir_task = os.path.join(dataset_dir, env_name, "ph", "image.hdf5")
env_meta = FileUtils.get_env_metadata_from_dataset(dataset_dir_task)
env_meta["use_image_obs"] = True
env = create_env(env_meta=env_meta, obs_keys=OBS_KEYS)
env = RobomimicLowdimWrapper(env=env)
with h5py.File(dataset_dir_task) as file:
demos = file["data"]
for i in tqdm(range(episode_num_pertask), desc="Loading hdf5 to ReplayBuffer"):
if f"demo_{i}" not in demos:
continue
demo = demos[f"demo_{i}"]
obs = demo["obs"]
states = demo["states"]
action = demo["actions"][:].astype(np.float32)
step_obs = np.concatenate([obs[key] for key in OBS_KEYS], axis=-1).astype(np.float32)
steps = []
for a, o, s in zip(action, step_obs, states):
# break into step dict
image = render_step(env, s)
step = {
"observation": {"state": o, "image": image},
"action": a,
"language_instruction": f"{env_name}",
}
steps.append(OrderedDict(step))
data_dict = {"steps": steps}
yield data_dict
def writer_for(tag, fps, res, src_folder="data/robomimic_policy_videos"):
if not os.path.exists(src_folder):
os.mkdir(src_folder)
return cv2.VideoWriter(
f"{src_folder}/{tag}.mp4",
cv2.VideoWriter_fourcc("m", "p", "4", "v"),
fps,
res,
)
def create_env(env_meta, obs_keys):
ObsUtils.initialize_obs_modality_mapping_from_dict({"image": obs_keys})
env = EnvUtils.create_env_from_metadata(
env_meta=env_meta,
render=False,
render_offscreen=True,
use_image_obs=True,
)
return env
@torch.no_grad()
def learner_trajectory_generator(env, policy, camera_name="view_1", env_name="lift"):
"""generate a trajectory rollout from the policy and a environment"""
o = env.reset()
# env.env.env.sim.set_state_from_flattened(state)
img = env.render()
prompt_image = np.tile(
img, (policy.prompt_horizon, 1, 1, 1)
).astype(np.uint8)
prompt_action = np.zeros(
(policy.prompt_horizon, policy.action_stride, 7) # robomimic dof=7
)
policy.set_initial_state((prompt_image, prompt_action))
policy.reset()
img = env.render()
img = cv2.resize(img, RESOLUTION).astype(np.uint8)
step_data = {"state": o, "image": img, "language_instruction": f"{env_name}"} # B x T
max_path_length = 100
action_dim = len(env.action_space.low)
i = 0
while i < max_path_length:
actions = policy.generate_action(step_data)
for a in actions:
i += 1
o, r, done, info = env.step(a)
img = env.render()
img = cv2.resize(img, RESOLUTION).astype(np.uint8)
ret = [o, r, done, info, img]
step_data = OrderedDict({"state": o, "image": img, "language_instruction": f"{env_name}"}) #
yield ret
@torch.no_grad()
def dp_learner_trajectory_generator(env, policy, max_length=100, camera_name="view_1", env_name="lift"):
"""generate a trajectory rollout from the policy and a environment"""
DP_RES = 84
# o = env.reset()
# # env.env.env.sim.set_state_from_flattened(state)
# img = env.render()
# prompt_image = np.tile(
# img, (policy.prompt_horizon, 1, 1, 1)
# ).astype(np.uint8)
# prompt_action = np.zeros(
# (policy.prompt_horizon, policy.action_stride, 7) # robomimic dof=7
# )
# policy.set_initial_state((prompt_image, prompt_action))
policy.reset()
o = env.reset()
# env.env.env.sim.set_state_from_flattened(state)
img = env.render()
img = cv2.resize(img, (DP_RES, DP_RES)).astype(np.uint8)
obs_dict = {"agentview_image": img.transpose(2, 0, 1)} # (C, H, W)
obs_buff = {
k: v[np.newaxis].repeat(policy.n_obs_steps, axis=0)
for k, v in obs_dict.items()
}
for _ in range(max_length):
traj = policy.generate_action({
k: torch.from_numpy(v).to(device=policy.device, dtype=policy.dtype).unsqueeze(0)
for k, v in obs_buff.items()
})['action'].squeeze(0).detach().cpu().numpy()
for a in traj:
o, r, done, info = env.step(a)
img = env.render()
img = cv2.resize(img, (DP_RES, DP_RES)).astype(np.uint8)
ret = [o, r, done, info, img]
obs_dict = {"agentview_image": img.transpose(2, 0, 1)}
obs_buff = {
k: np.roll(v, shift=-1, axis=0)
for k, v in obs_buff.items()
}
for k, v in obs_dict.items():
obs_buff[k][-1] = v
yield ret
class RolloutRunner:
"""evaluate policy rollouts"""
def __init__(self, env_names, episode_num=200, save_video=False):
self.env_names = env_names
self.save_video = save_video
self.episode_num = episode_num
self.envs = []
self.env_names = []
for env_name in env_names:
dataset_dir = "data/robomimic/datasets"
dataset_dir_task = os.path.join(dataset_dir, env_name, "ph", "image.hdf5")
env_meta = FileUtils.get_env_metadata_from_dataset(dataset_dir_task)
env = create_env(env_meta=env_meta, obs_keys=OBS_KEYS)
env = RobomimicLowdimWrapper(env=env) # should be kitchen all
self.envs.append(env)
self.env_names.append(env_name)
def step_render(self, curr_state, actions, freq=1):
"""
render a sequence of frames given current state and a sequence of actions
"""
images = []
prompt_steps = len(actions)
env = self.envs[0]
env.env.env.sim.set_state_from_flattened(curr_state)
env.env.env.sim.forward()
img = env.render()
img = cv2.resize(img, RESOLUTION)
# first image
images.append(img)
for action in actions:
# action expands based on the frequency
action = action.reshape(freq, -1)
for sub_action in action:
env.step(sub_action)
img = env.render()
img = cv2.resize(img, RESOLUTION)
images.append(img)
# visualize all list of these images
fig, ax = plt.subplots(1, prompt_steps + 1, figsize=(20, 20))
for i, img in enumerate(images):
ax[i].imshow(img)
ax[i].axis("off")
# plt.savefig("output/sim_video_mix/test.png")
return images
@torch.no_grad()
def run(
self, policy, save_video=False, gui=False, video_postfix="", seed=233, env_name=None, episode_num=-1, **kwargs
):
quit_on_success = True
if episode_num == -1:
episode_num = self.episode_num
for env_idx, env in enumerate(self.envs):
env.seed(seed)
curr_env_name = self.env_names[env_idx]
if env_name is not None:
if str(env_name[0]) != str(curr_env_name):
continue
print(f"selected env name: {env_name} currente env: {curr_env_name}")
if self.save_video:
writer = writer_for(
f"{self.env_names[env_idx]}_{video_postfix}",
10,
RESOLUTION,
src_folder="data/robomimic_policy_videos",
)
print(f"save to video file {self.env_names[env_idx]}_{video_postfix}")
total_success = 0
total_reward = 0
pbar = tqdm(range(episode_num), position=1, leave=True)
for i in pbar:
try:
eps_reward = 0
traj_length = 0
for o, r, done, info, img in learner_trajectory_generator(env, policy):
traj_length += 1
eps_reward += r
if self.save_video and i <= 10:
if gui:
cv2.imshow("img", img)
cv2.waitKey(1)
img = cv2.resize(img, RESOLUTION)
writer.write(img[..., [2, 1, 0]])
if done or eps_reward >= 1:
break
actual_reward = eps_reward >= 1
pbar.set_description(f"success: {actual_reward}")
total_success += actual_reward
total_reward += actual_reward
except Exception as e:
print(traceback.format_exc())
continue
return total_success / episode_num, total_reward / episode_num
if __name__ == "__main__":
# generate for all tasks
runner = RolloutRunner(["all"], 200) |