Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,458 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 |
import argparse
import contextlib
import logging
import math
import os
import time
import matplotlib
import mup
import numpy as np
import torch
import torchvision.transforms.functional as transforms_f
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from einops import rearrange
from lpips import lpips
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
import traceback
from transformers import (
default_data_collator,
get_scheduler,
)
from collections import defaultdict
from data import RawTokenDataset, get_maskgit_collator
from common.eval_utils import decode_tokens, compute_lpips
from genie.st_mask_git import STMaskGIT
from genie.config import GenieConfig
from visualize import decode_latents_wrapper
from skimage import metrics as image_metrics
from matplotlib import pyplot as plt
from datetime import datetime
from accelerate import DistributedDataParallelKwargs
torch.autograd.set_detect_anomaly(True)
# Get current date and time
now = datetime.now()
# Format the datetime object as a string
formatted_date = now.strftime("%Y-%m-%d %H:%M:%S")
torch.set_float32_matmul_precision("medium")
logger = get_logger(__name__)
def parse_args():
# parser = argparse.ArgumentParser(description="Train a MaskGIT or Llama-style LLM on video generation.")
parser = argparse.ArgumentParser(description="Train a spatial-temporal MaskGIT-style model on video generation.")
# Data
parser.add_argument(
"--train_data_dir", type=str, default="data/1x_humanoid_magvit_traj1000_train",
help="Directory containing tokenized data, should have a `video.bin`, `metadata.json` and `segment_ids.json`."
)
parser.add_argument(
"--val_data_dir", type=str, default="data/1x_humanoid_magvit_traj1000_val",
help="Directory containing tokenized data, should have a `video.bin`, `metadata.json` and `segment_ids.json`."
)
parser.add_argument(
"--domain", type=str, default="1x_humanoid",
help="The domain name for the dataset"
)
parser.add_argument(
"--window_size",
type=int,
default=12,
help="Number of frames to in a sequence.",
)
parser.add_argument(
"--stride",
type=int,
default=None,
help="Difference in frame count between consecutive frames in a sequence.",
)
parser.add_argument(
"--filter_overlaps",
action="store_true",
help=(
"Whether to filter repeated frames in the train dataset (`filter_overlaps` always true for the val set). "
"Filtering essentially makes the training dataset less correlated but ~16x smaller, "
"see the `filter_overlaps` argument in `RawTokenDataset` for details."),
default=True
)
# Model
parser.add_argument(
"--llama_config",
type=str,
help="`transformers.LlamaConfig` json. "
"E.g. https://huggingface.co/1x-technologies/Llama_1B_v0/blob/main/config.json",
)
parser.add_argument(
"--diffusion",
action="store_true",
help="use diffusion model."
),
parser.add_argument(
"--genie_config",
type=str,
help="GenieConfig json."
),
parser.add_argument(
"--warmstart_path",
type=str,
default=None,
help="A path to a checkpoint to warmstart a model from, possibly not trained on the same dataset, "
"will resize embeddings if needed.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
# Training
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=1,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
default=False,
action="store_true",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.05, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=2, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--max_eval_steps",
type=int,
default=int(1e10),
help="Only evaluate on `max_eval_steps` batches of validation data per process, faster.",
)
parser.add_argument(
"--eval_every_n_steps",
type=int,
default=1000,
help="Eval every N training steps.",
)
parser.add_argument(
"--vis_every_n_steps",
type=int,
default=20000,
help="Visualize every N training steps.",
)
parser.add_argument(
"--lr_scheduler_type",
type=str,
default="constant_with_warmup",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "custom_cosine"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=1.0,
help="Threshold to clip gradients.",
)
parser.add_argument(
"--attention_dropout",
type=float,
default=0.05,
help="Attention dropout prob.",
)
parser.add_argument(
"--adam_beta_1",
type=float,
default=0.9,
)
parser.add_argument(
"--adam_beta_2",
type=float,
default=0.95,
)
parser.add_argument(
"--adam_eps",
type=float,
default=1e-8,
)
# Misc
parser.add_argument("--output_dir", type=str, required=True, help="Where to store the model checkpoints.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default="10000",
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument(
"--overfit_first_batch",
action="store_true",
help=(
"Debug option that trains and validates on only the first batch of the training dataset."
),
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help="The integration to report the results and logs to.",
)
parser.add_argument(
"--mu_transfer",
action="store_true",
help="If specified, will train with mu transfer reparametrizations. Only supports Llama models.",
default=True
)
parser.add_argument(
"--no_compile",
action="store_true",
help="If specified, will not compile the model.",
default=True
)
parser.add_argument(
"--run_name",
type=str,
default="video_prediction",
help="",
)
parser.add_argument(
"--cleanup_checkpoints",
action="store_true",
help=(
"Whether to clean up checkpoints (to keep only the last 3) along the training. "),
)
parser.add_argument(
"--save_second_epoch",
action="store_true",
help="Whether to checkpoint at the end of the second epoch (1-indexing). This one will not be auto-deleted by cleanup.",
default=True
)
return parser
def save_checkpoint(model, accelerator, args, filename):
"""
filename: `save_path = os.path.join(args.output_dir, filename)`
"""
unwrapped_model = accelerator.unwrap_model(model)
save_path = os.path.join(args.output_dir, filename)
if accelerator.is_main_process:
unwrapped_model.save_pretrained(
save_path, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
accelerator.save_state(save_path)
@torch.no_grad()
def visualize(accelerator, model, dataloader, window_size, metrics_prefix="train", max_steps=1):
"""
Visualizes model's autoregressive generation outputs, logged to wandb.
It uses teacher-forcing (causal in time axis)
"""
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if not unwrapped_model.config.jointly_predict_states:
return
metrics = defaultdict(list)
if accelerator.is_main_process:
lpips_alex = lpips.LPIPS(net="alex") # Calculate LPIPS w/ AlexNet, the fastest option
decode_latents = decode_latents_wrapper() # re-initializing every time to save memory
unwrapped_model.eval()
rank = 0
dataloader_iter = iter(dataloader)
for step in range(len(dataloader)):
try:
batch = next(dataloader_iter)
# Note: hardcoding 4 image cap for faster inference on small models
TEST_NUM = 4
reshaped_labels = rearrange(batch["labels"][:TEST_NUM], "b (t s) -> b t s", t=window_size).to(accelerator.device) # `s` is really `(h, w)`
domains = batch["domain"][:TEST_NUM]
if 'action_ids' in batch:
action_ids = batch["action_ids"][:TEST_NUM].to(accelerator.device)
else:
action_ids = None
# hardcoding half of frames for context
num_prompt_frames = unwrapped_model.config.num_prompt_frames
num_new_tokens = batch["w"][0] * batch["h"][0] * (window_size - num_prompt_frames)
prompt_input_ids = rearrange(reshaped_labels[:, :num_prompt_frames], "b t s -> b (t s)")
outputs = unwrapped_model.generate(input_ids=prompt_input_ids, attention_mask=torch.ones_like(prompt_input_ids),
max_new_tokens=num_new_tokens, min_new_tokens=num_new_tokens,
action_ids=action_ids,
domain=batch["domain"][:TEST_NUM],
w=batch["w"][:TEST_NUM],
h=batch["h"][:TEST_NUM])
output_tokens = rearrange(outputs, "b (t h w) -> b t h w", t=window_size,
h=batch["h"][0], w=batch["w"][0])
gtruth_tokens = rearrange(reshaped_labels[:, num_prompt_frames:], "b t (h w) -> b t h w",
h=batch["h"][0], w=batch["w"][0])
decoded_output = decode_tokens(output_tokens.cpu(), decode_latents)
decoded_gtruth = decode_tokens(gtruth_tokens.cpu(), decode_latents)
decoded_output = accelerator.gather(decoded_output.to(accelerator.device)).cpu()
decoded_gtruth = accelerator.gather(decoded_gtruth.to(accelerator.device)).cpu()
# As in Genie. we also compute psnr_delta = PSNR(x_t, x_t_hat) - PSNR(x_t, x_t_hatprime) where x_t_hatprime samples random actions
# this difference in PSNR measures the controllability
# actions need to be just uniform random actions
if action_ids is not None:
random_action_ids = torch.randn_like(action_ids)
random_action_outputs = unwrapped_model.generate(input_ids=prompt_input_ids, attention_mask=torch.ones_like(prompt_input_ids),
max_new_tokens=num_new_tokens, min_new_tokens=num_new_tokens,
action_ids=random_action_ids,
domain=batch["domain"][:TEST_NUM],
w=batch["w"][:TEST_NUM],
h=batch["h"][:TEST_NUM],
skip_normalization=True)
random_output_tokens = rearrange(random_action_outputs, "b (t h w) -> b t h w", t=window_size,
h=batch["h"][0], w=batch["w"][0])
random_output_tokens = decode_tokens(random_output_tokens.cpu(), decode_latents)
random_output_tokens = accelerator.gather(random_output_tokens.to(accelerator.device)).cpu()
random_pred_frames_numpy = random_output_tokens[:, num_prompt_frames:].detach().cpu().numpy()
if accelerator.is_main_process:
exs_per_fig = 4
for j in range(0, len(decoded_output), exs_per_fig):
fig, axs = plt.subplots(nrows=2 * exs_per_fig, ncols=window_size, figsize=(3 * window_size, 3 * 2 * exs_per_fig))
# If len(decoded_output) is not a multiple of 4, make sure to truncate properly
for k in range(min(exs_per_fig, len(decoded_output) - j)):
for i in range(num_prompt_frames):
for ax in (axs[k * 2, i], axs[k * 2 + 1, i]):
ax.imshow(transforms_f.to_pil_image(decoded_output[j + k, i]))
ax.set_title("Context")
ax.axis("off")
for i in range(num_prompt_frames, window_size):
axs[k * 2, i].imshow(transforms_f.to_pil_image(decoded_gtruth[j + k, i - num_prompt_frames]))
axs[k * 2, i].set_title("Ground truth")
axs[k * 2 + 1, i].imshow(transforms_f.to_pil_image(decoded_output[j + k, i]))
axs[k * 2 + 1, i].set_title("Prediction")
for ax in axs[:, i]:
ax.axis("off")
rank = accelerator.process_index
wandb_tracker = accelerator.get_tracker("wandb")
# wandb_tracker.log({f"vis_{metrics_prefix}_{j}": fig}, commit=False)
wandb_tracker.log({f"{domains[0]}/vis_{metrics_prefix}_{j}": fig}, commit=False)
plt.close(fig)
metrics["ar_lpips"].extend(compute_lpips(decoded_gtruth, # Note: not parallelizing right now
decoded_output[:, num_prompt_frames:], lpips_alex))
gt_frames_numpy = decoded_gtruth.detach().cpu().numpy()
pred_frames_numpy = decoded_output[:, num_prompt_frames:].detach().cpu().numpy()
psnr = [image_metrics.peak_signal_noise_ratio(
gt_frames_numpy[i] / 255., pred_frames_numpy[i] / 255., data_range=1.0) for i in range(gt_frames_numpy.shape[0])]
ssim = [np.mean([image_metrics.structural_similarity(
gt_frames_numpy[i][j] / 255., pred_frames_numpy[i][j] / 255., data_range=1.0, channel_axis=0) \
for i in range(gt_frames_numpy.shape[0])]) for j in range(gt_frames_numpy.shape[1])]
# compute some other metrics
metrics[f"{metrics_prefix}/ar_psnr"].extend(psnr)
metrics[f"{metrics_prefix}/ar_ssim"].extend(ssim)
metrics[f"{batch['domain'][0]}/ar_lpips"].extend(compute_lpips(decoded_gtruth, # Note: not parallelizing right now
decoded_output[:, num_prompt_frames:], lpips_alex))
if action_ids is not None:
# log controllability as random subtracts groundtruth
psnr_delta = [psnr[i] - image_metrics.peak_signal_noise_ratio(
gt_frames_numpy[i] / 255., random_pred_frames_numpy[i] / 255., data_range=1.0) for i in range(gt_frames_numpy.shape[0])]
metrics[f"{metrics_prefix}/ar_psnr_delta"].extend(psnr_delta)
except Exception as e:
print("batch failed", traceback.format_exc())
if step + 1 >= max_steps:
break
unwrapped_model.train()
if accelerator.is_main_process:
metrics = {f"{metrics_prefix}_{key}": np.mean(val) for key, val in metrics.items() if len(val) > 0}
print(f"{metrics=}")
wandb_tracker = accelerator.get_tracker("wandb")
wandb_tracker.log(metrics, commit=False)
def train(accelerator, model, optimizer, lr_scheduler, train_dataloader, eval_dataloader, experiment_config, config, args):
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
resume_step = None
checkpoint_path = ""
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
try:
if os.path.exists(args.resume_from_checkpoint + "/pytorch_model.bin"):
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint.rstrip("/"))
# else:
# checkpoint_path = args.resume_from_checkpoint
# path = os.path.basename(args.resume_from_checkpoint.rstrip("/"))
else:
# Get the most recent checkpoint
base_path = os.path.dirname(args.resume_from_checkpoint)
dirs = [os.path.join(base_path, f.name) for f in os.scandir(base_path) if f.is_dir()]
dirs.sort(key=os.path.getctime)
# Sorts folders by date modified, most recent checkpoint is the last
if len(dirs) > 0:
path = dirs[-1]
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
if os.path.exists(checkpoint_path):
# for finetuning with a different structures
print(f"loading checkpoint from {checkpoint_path}")
accelerator.load_state(checkpoint_path, strict=False)
# tied weights not saved so can't load strict, but also no need to tie again
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
else:
print("No checkpoint found, training from scratch.")
training_difference = "step_0"
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
except Exception as e:
training_difference = "step_0"
starting_epoch = 0
completed_steps = 0
print("load checkpoint incomplete", traceback.format_exc())
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
loss_info = torch.zeros(2, device=accelerator.device) # sum, count
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
train_dataloader.set_epoch(epoch)
# potentially cleanup the previous checkpoints
if args.cleanup_checkpoints:
if os.path.exists(args.output_dir):
dirs = [os.path.join(args.output_dir, f.name) for f in os.scandir(args.output_dir) if f.is_dir()]
if len(dirs) > 3: # must keep at least 2 checkpoints for second epoch and most recent one
if args.save_second_epoch and os.path.join(args.output_dir, "epoch_1") in dirs: # never prune second epoch
dirs.remove(os.path.join(args.output_dir, "epoch_1"))
dirs.sort(key=os.path.getctime)
paths = dirs[:-3]
# only keep the last 3
# for path in paths:
# print(f"remove rm -rf {path}")
# os.system(f"rm -rf {path}")
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
_time = time.time()
dataloader_iter = iter(active_dataloader)
# Switch back to train mode
model.train()
num_iters_per_epoch = max(len(active_dataloader) - 8, 1) # avoid the last few iters
for step in range(num_iters_per_epoch):
try:
train_action_loss = 0
batch = next(dataloader_iter)
# to reduce the numerical instability in the very beginning of training
gradient_accumulation_steps = args.gradient_accumulation_steps
batch_size = batch["input_ids"].size(0)
# Manual gradient accumulation because accelerator somehow taking a lot of memory
is_update_step = (step + 1) % gradient_accumulation_steps == 0
ctx_manager = contextlib.nullcontext() if is_update_step else accelerator.no_sync(model)
with ctx_manager:
accelerator.wait_for_everyone()
outputs = model(**batch)
loss = outputs.loss
if not torch.isnan(loss).any():
loss_info[0] += loss.detach().mean() * batch_size # only video loss
if "action_loss" in outputs:
train_action_loss = outputs.action_loss.item()
loss += config.action_loss_weight * outputs.action_loss
loss_info[1] += batch_size
accelerator.backward(loss / gradient_accumulation_steps)
else:
print("Warning: NaN or Inf detected in loss. Skipping backward pass.")
dummy_loss = torch.zeros_like(loss, requires_grad=True)
accelerator.backward(dummy_loss)
if not is_update_step:
continue
except Exception as e:
# avoid final iteration batch concatenation problems
print("batch failed", traceback.format_exc())
continue
# Everything below only happens on update step
if args.max_grad_norm is not None:
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
loss_info = accelerator.reduce(loss_info)
avg_train_loss = (loss_info[0] / loss_info[1]).item() # sum / count
loss_info *= 0 # reset sum and count
try:
perplexity = math.exp(avg_train_loss)
except OverflowError:
print("overflow error for perplexity")
perplexity = float("inf")
# print(f"{perplexity=} {avg_train_loss=}")
batch_time = time.time() - _time # accumulated batch
rank = accelerator.process_index
domain_iter = str(batch['domain'][0])
_time = time.time()
accelerator.log(
{
"train_perplexity": perplexity,
"train_loss": avg_train_loss,
"train_action_loss": train_action_loss,
f"stat/{domain_iter}_action_loss": train_action_loss / loss_info[1],
f"stat/{domain_iter}_train_perplexity": perplexity,
f"stat/{domain_iter}_train_loss": avg_train_loss,
"epoch": epoch,
"update_step": completed_steps,
"examples_processed": completed_steps * args.per_device_train_batch_size
* args.gradient_accumulation_steps * accelerator.num_processes,
"learning_rate": lr_scheduler.get_last_lr()[0],
"flops": (completed_steps + 1) * experiment_config["FLOPs_per_update_step"],
"throughput_examples": experiment_config["effective_batch_size"] / batch_time,
}, step=completed_steps)
progress_bar.update(1)
completed_steps += 1
# print(f"{completed_steps % args.checkpointing_steps=} {completed_steps=} {args.checkpointing_steps=}")
if completed_steps % int(args.checkpointing_steps) == 0:
print(f"Saving checkpoint at step {completed_steps}!")
save_checkpoint(model, accelerator, args, f"step_{completed_steps}")
if completed_steps % args.eval_every_n_steps == 0:
time.sleep(1) # manual adding time sleep
model.eval()
eval_losses = []
# Compute token-level accuracy (w/ teacher forcing)
num_correct = 0
num_total = 0
# barrier
# to resolve the data collating issues
eval_dataloader_iter = iter(eval_dataloader)
for step in range(args.max_eval_steps):
eval_action_loss = 0
try:
batch = next(eval_dataloader_iter)
batch_size = len(batch["input_ids"]) # Last batch might not be full
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
if "action_loss" in outputs:
eval_action_loss = outputs.action_loss.item()
eval_losses.append(accelerator.gather_for_metrics(loss.repeat(batch_size)))
except Exception as e:
print("error:", e)
continue
if "acc" in outputs:
# `num_correct` and `num_total` actually track mean accuracy in this case.
num_correct_batch = accelerator.reduce(outputs.acc, reduction="mean").item() * batch_size
num_total_batch = batch_size
num_correct += num_correct_batch
num_total += num_total_batch
else:
shifted_preds = torch.argmax(outputs.logits[:, :-1, :], dim=-1)
shifted_labels = batch["labels"][:, 1:]
num_correct_batch = accelerator.gather_for_metrics((shifted_preds == shifted_labels).sum()).sum().item()
num_total_batch = accelerator.gather_for_metrics(torch.tensor(torch.numel(shifted_labels),
device=accelerator.device)).sum().item()
num_correct += num_correct_batch
num_total += num_total_batch
if step >= args.max_eval_steps * args.num_datasets:
break
try:
accelerator.log(
{
f'stat/{domain_iter}_eval_teacher_acc': num_correct_batch / num_total_batch,
f'stat/{domain_iter}_eval_loss': (torch.mean(eval_losses[-1])).item(),
f'stat/{domain_iter}_eval_action_loss': eval_action_loss,
},
step=completed_steps,
)
except Exception as e:
print("log failed", e)
continue
if len(eval_losses) > 0:
eval_losses = torch.cat(eval_losses)
eval_loss = torch.mean(eval_losses).item()
eval_teacher_acc = num_correct / num_total
try:
perplexity = math.exp(eval_loss)
except OverflowError:
print("overflow error for perplexity")
perplexity = float("inf")
else:
continue
logger.info(f"{completed_steps=} {perplexity=} {eval_loss=} {eval_teacher_acc=}")
accelerator.log(
{
"eval_perplexity": perplexity,
"eval_loss": eval_loss,
"eval_action_loss": eval_action_loss,
"eval_teacher_acc": eval_teacher_acc,
"epoch": epoch,
"update_step": completed_steps,
"examples_processed": completed_steps * args.per_device_train_batch_size
* args.gradient_accumulation_steps * accelerator.num_processes,
"flops": completed_steps * experiment_config["FLOPs_per_update_step"],
},
step=completed_steps,
)
if completed_steps % args.vis_every_n_steps == 0 or completed_steps >= args.max_train_steps:
if "encoder_type" not in experiment_config:
experiment_config["encoder_name_or_path"] = "data/magvit2.ckpt"
experiment_config["encoder_type"] = "magvit"
if not args.overfit_first_batch: # val is same as train otherwise
visualize(accelerator, model, eval_dataloader, args.window_size, "val")
visualize(accelerator, model, train_dataloader, args.window_size, "train")
if completed_steps >= args.max_train_steps:
break
if args.checkpointing_steps == "epoch" or (args.save_second_epoch and epoch == 1):
save_checkpoint(model, accelerator, args, f"epoch_{epoch}")
save_checkpoint(model, accelerator, args, f"final_checkpt")
accelerator.end_training()
def main():
parser = parse_args()
args = parser.parse_args()
assert (args.llama_config is not None) ^ (args.genie_config is not None), \
"Exactly one of `llama_config` and `genie_config` should be set."
# Manual gradient accumulation
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) #
accelerator = Accelerator(gradient_accumulation_steps=1, log_with=args.report_to, project_dir=args.output_dir, kwargs_handlers=[ddp_kwargs])
accelerator.init_trackers("video")
if accelerator.is_main_process:
accelerator.trackers[0].run.name = formatted_date + "_" + args.run_name
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_info()
print(f"Rank {accelerator.process_index} assigned to device {torch.cuda.current_device()}")
else:
transformers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
config = GenieConfig.from_pretrained(args.genie_config)
train_dataset = RawTokenDataset(args.train_data_dir, window_size=args.window_size, name=args.domain,
stride=args.stride, filter_overlaps=args.filter_overlaps,
compute_stride_from_freq_table=(args.stride is None),
use_actions=config.use_actions)
if not args.overfit_first_batch:
eval_dataset = RawTokenDataset(args.val_data_dir, window_size=args.window_size, name=args.domain,
stride=args.stride, filter_overlaps=True,
compute_stride_from_freq_table=(args.stride is None),
use_actions=config.use_actions)
else:
train_dataset.valid_start_inds = train_dataset.valid_start_inds[:args.per_device_train_batch_size
* args.gradient_accumulation_steps
* accelerator.num_processes]
eval_dataset = train_dataset
assert all(train_dataset.metadata[shared_key] == eval_dataset.metadata[shared_key]
for shared_key in ("s", "vocab_size", "hz"))
latent_side_len, vocab_size, hz = [train_dataset.metadata[key] for key in ("s", "vocab_size", "hz")]
# Note: changing this may affect pre-trained model due to attn scaling
config.use_mup = args.mu_transfer
config.image_vocab_size = vocab_size
config.T = args.window_size
model = STMaskGIT(config)
if config.use_actions:
print(f"Initializing action projectors with {train_dataset.n_action}d action")
model.init_action_projectors([train_dataset.name], [train_dataset.n_action], [train_dataset.action_stat], config.action_network)
if args.mu_transfer:
model.set_mup_shapes(rescale_params=True)
# model.init_weights() # might be unnecessary if `rescale_params` is True
# Optimizer. Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "layer_norm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
# scale base learning rate
effective_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps \
* accelerator.num_processes
args.learning_rate = args.learning_rate * min(max(1, effective_batch_size / 64), 8)
opt_class = mup.MuAdamW if args.mu_transfer else torch.optim.AdamW
optimizer = opt_class(optimizer_grouped_parameters, lr=args.learning_rate,
betas=(args.adam_beta_1, args.adam_beta_2), eps=args.adam_eps)
# DataLoaders creation:
collate_fn = default_data_collator if args.llama_config is not None else get_maskgit_collator(config)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn,
batch_size=args.per_device_train_batch_size, num_workers=8, pin_memory=True,
)
# Shuffle eval dataset and then set shuffle=False on the dataloader.
# Shuffling in the dataloader results in reshuffling with each iteration.
eval_dataset.valid_start_inds = torch.tensor(eval_dataset.valid_start_inds)[
torch.randperm(len(eval_dataset), generator=torch.Generator().manual_seed(0))
].tolist()
eval_dataloader = DataLoader(
eval_dataset, shuffle=False, collate_fn=collate_fn,
batch_size=args.per_device_eval_batch_size, pin_memory=True, num_workers=8,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
if args.max_train_steps < 2000 and args.resume_from_checkpoint is None: # minimal number of trainng steps
args.max_train_steps = 2000
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
overrode_max_train_steps = True
if args.lr_scheduler_type == "custom_cosine": # decay to `end_ratio` of the peak learning rate
def get_lr_wrapper(warmup_steps, max_steps, end_ratio=0.1):
def get_lr(step):
if step < warmup_steps:
return (step + 1) / warmup_steps
remaining_steps = max_steps - warmup_steps
return ((1 + math.cos(math.pi * (step - warmup_steps) / remaining_steps)) / 2) \
* (1 - end_ratio) + end_ratio
return get_lr
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer, get_lr_wrapper(args.num_warmup_steps * accelerator.num_processes,
args.max_train_steps if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes)
)
else:
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes,
)
# Enable gradient checkpointing to save memory
if args.gradient_checkpointing:
logger.info("Enabling gradient checkpointing")
model.gradient_checkpointing_enable()
model.config.use_cache = False # incompatible with grad checkpointing
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
if not args.no_compile:
torch._dynamo.config.cache_size_limit = 256
torch._dynamo.config.optimize_ddp = False # https://github.com/pytorch/pytorch/issues/104674
# TODO: https://github.com/pytorch/pytorch/issues/109774#issuecomment-2046633776
model = torch.compile(model)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initialize automatically on the main process.
experiment_config = vars(args) | vars(config)
seq_len = latent_side_len**2 * args.window_size
args.num_datasets = 1
model_module = model.module if hasattr(model, "module") else model
experiment_config.update({
"model_parameters": sum(p.numel() for p in model_module.parameters()),
"model_parameters_M": round(sum(p.numel() for p in model_module.parameters()) / 1e6),
"trunk_parameters": sum(p.numel() for p in model_module.decoder.parameters()),
"trunk_parameters_M": round(sum(p.numel() for p in model_module.decoder.parameters()) / 1e6),
"seq_len": seq_len,
"hz": hz / train_dataset.stride,
"train_data_tokens": len(train_dataset) * seq_len, # only one epoch
"effective_batch_size": effective_batch_size,
"effective_batch_size_tokens": effective_batch_size * seq_len,
"mixed_precision": accelerator.mixed_precision,
"num_datasets": 1
})
print("============================")
print(f"model parameters: {experiment_config['model_parameters_M']}M")
print("============================")
experiment_config["FLOPs_per_update_step"] = 6 * experiment_config["model_parameters"] \
* experiment_config["effective_batch_size_tokens"]
accelerator.init_trackers(project_name="video", config=experiment_config)
train(accelerator, model, optimizer, lr_scheduler, train_dataloader, eval_dataloader, experiment_config, config, args)
if __name__ == "__main__":
main() |