Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,312 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import logging
import math
import os
import mup
import numpy as np
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
default_data_collator,
get_scheduler,
)
import wandb
from cont_data import RawFeatureDataset, get_maskgit_collator_feature
from genie.config import DiffusionGenieConfig
from genie.st_mar import STMAR
from datetime import datetime
from accelerate import DistributedDataParallelKwargs
from common import data_sampler
import yaml
from train_diffusion import parse_args, train
# Get current date and time
now = datetime.now()
# Format the datetime object as a string
formatted_date = now.strftime("%Y-%m-%d %H:%M:%S")
torch.set_float32_matmul_precision("medium")
logger = get_logger(__name__)
torch.autograd.set_detect_anomaly(True)
def parse_args_multi():
# parser = argparse.ArgumentParser(description="Train a MaskGIT or Llama-style LLM on video generation.")
parser = parse_args()
# Data
parser.add_argument(
"--train_split", type=str, default="experiments/datasplit/dataset2.yaml",
help="Config files for using multiple datasets."
)
parser.add_argument(
"--num_episodes_per_dataset",
type=int,
default=1000000,
help="Maximum number of trajectories per dataset",
)
parser.add_argument(
"--image_maskgit_path",
type=str,
default=None,
help="Optional path to the official MaskGIT checkpoint. "
"If specified, will copy relevant weights from the checkpoint. "
"These weights will have a different (hard-coded) warmup schedule.",
)
parser.add_argument(
"--action_network",
type=str,
default=None,
choices=["concat", "cross_attention"], # TODO: add other methods (resampler_concat, modulate, etc)
help="If specified, will override the action in the config. Helps reduce the number of config jsons."
)
args = parser.parse_args()
return args
def main():
args = parse_args_multi()
assert (args.llama_config is not None) ^ (args.genie_config is not None), \
"Exactly one of `llama_config` and `genie_config` should be set."
# Manual gradient accumulation
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(gradient_accumulation_steps=1, log_with=args.report_to,
even_batches=False, project_dir=args.output_dir, kwargs_handlers=[ddp_kwargs])
accelerator.init_trackers("video")
if accelerator.is_main_process:
accelerator.trackers[0].run.name = formatted_date + "_" + args.run_name
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# create multiple datasets
with open(args.train_split, 'r') as file:
datasplit = yaml.safe_load(file)
config = DiffusionGenieConfig.from_pretrained(args.genie_config)
# Extract the 'domains' value and split it into a list
domains_list = [domain.strip() for domain in datasplit['domains'].split(',')]
train_datasets = []
val_datasets = []
dataset_num_samples = []
val_dataset_num_samples = []
action_dimensions = []
action_stats = []
shared_keys = ("s", "h", "w", "vocab_size", "latent_channels",
"encoder_type", "encoder_name_or_path", "quantized") # TODO: check train/val hz per dataset?
for domain in domains_list:
try:
# train_data_dir = f"data/{domain}_vae_traj500_train" # {args.num_episodes_per_dataset}
# val_data_dir = f"data/{domain}_vae_traj500_val"
train_data_dir = f"data/{domain}_noquant_temporalvae_shard0_of_1_train" # {args.num_episodes_per_dataset}
val_data_dir = f"data/{domain}_noquant_temporalvae_shard0_of_1_val"
# train_data_dir = f"data/{domain}_vae_traj{args.num_episodes_per_dataset}_train" # {args.num_episodes_per_dataset}
# val_data_dir = f"data/{domain}_vae_traj{args.num_episodes_per_dataset}_val"
if config.drop_action_ratio > 0:
raise NotImplementedError
train_dataset = RawFeatureDataset(train_data_dir, window_size=args.window_size,
stride=args.stride, filter_overlaps=args.filter_overlaps,
max_traj_num=args.num_episodes_per_dataset,
use_actions=config.use_actions, domain=domain)
dataset_num_samples.append(len(train_dataset))
action_dimensions.append(train_dataset.n_action)
if config.use_actions:
action_stats.append(train_dataset.action_stat)
if not args.overfit_first_batch:
eval_dataset = RawFeatureDataset(val_data_dir, window_size=args.window_size,
stride=args.stride, filter_overlaps=True,
use_actions=config.use_actions, domain=domain)
else:
train_dataset.valid_start_inds = train_dataset.valid_start_inds[:args.per_device_train_batch_size
* args.gradient_accumulation_steps
* accelerator.num_processes]
eval_dataset = train_dataset
# Shuffle eval dataset and then set shuffle=False on the dataloader.
# Shuffling in the dataloader results in reshuffling with each iteration.
eval_dataset.valid_start_inds = torch.tensor(eval_dataset.valid_start_inds)[
torch.randperm(len(eval_dataset), generator=torch.Generator().manual_seed(0))
].tolist()
val_dataset_num_samples.append(len(eval_dataset))
except Exception as e:
import traceback
print(traceback.format_exc())
train_datasets.append(train_dataset)
val_datasets.append(eval_dataset)
assert all(train_dataset.metadata.get(shared_key) == eval_dataset.metadata.get(shared_key)
for shared_key in shared_keys) # TODO: check this across all datasets
print("dataset_num_samples:", dataset_num_samples)
# Will not store key in metadata if it's missing, so that defaults can be filled by functions later? # TODO: handle missing keys
shared_metadata = {shared_key: train_dataset.metadata[shared_key]
for shared_key in shared_keys if shared_key in train_dataset.metadata}
config.use_mup = args.mu_transfer # Note: changing this may affect pre-trained model due to attn scaling
config.image_vocab_size = None
config.T = args.window_size
config.S = shared_metadata["h"] * shared_metadata["w"] # TODO: make STMaskGIT use h and w instead of S
config.vae_embed_dim = shared_metadata["latent_channels"]
if args.action_network is not None:
print("Using action network", args.action_network)
config.action_network = args.action_network
model = STMAR(config)
if config.use_actions:
# TODO: use new list instead of domains_list, in case domain fails
model.init_action_projectors(domains_list, action_dimensions, action_stats, config.action_network)
if args.image_maskgit_path is not None:
model.init_weights()
model.load_pretrained_image_weights(args.image_maskgit_path)
if args.mu_transfer:
model.set_mup_shapes(rescale_params=False)
elif args.mu_transfer:
model.set_mup_shapes(rescale_params=True)
# model.init_weights() # might be unnecessary if `rescale_params` is True
# Optimizer. Split weights in two groups, one with weight decay and the other not.
opt_class = mup.MuAdamW if args.mu_transfer else torch.optim.AdamW
# scale base learning rate
effective_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps \
* accelerator.num_processes
args.learning_rate = args.learning_rate * min(max(1, effective_batch_size / 64), 8)
no_decay = ["bias", "layer_norm.weight"]
pretrained_params = { # more accurately the params we want lower lr for, some weights like pos_embed_TSC are pre-trained but not treated as lower lr
param_name
for param_name, _ in model.named_parameters()
if any(term in param_name for term in ("spatial_attn.qkv", "spatial_attn.proj", "mlp"))
} if args.image_maskgit_path is not None else set()
# Give pre-trained weights 10x lower learning rate
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay) and n not in pretrained_params],
"weight_decay": args.weight_decay,
"lr": args.learning_rate,
},
{
"params": [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay) and n not in pretrained_params],
"weight_decay": 0.0,
"lr": args.learning_rate,
},
{
"params": [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay) and n in pretrained_params],
"weight_decay": args.weight_decay,
"lr": args.learning_rate * 0.1,
},
{
"params": [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay) and n in pretrained_params],
"weight_decay": 0.0,
"lr": args.learning_rate * 0.1,
},
]
optimizer = opt_class(optimizer_grouped_parameters, lr=args.learning_rate,
betas=(args.adam_beta_1, args.adam_beta_2), eps=args.adam_eps)
# DataLoaders creation:
collate_fn = default_data_collator if args.llama_config is not None else get_maskgit_collator_feature(config)
combined_dataset = torch.utils.data.ConcatDataset(train_datasets)
batch_sampler = data_sampler.MultiTaskBatchSampler(
dataset_num_samples,
batch_size=args.per_device_train_batch_size,
temperature=3. # the higher the more flat the distribution
)
dataset_traj_image = data_sampler.make_dataset_pie_plot(domains_list, dataset_num_samples)
accelerator.log(({"dataset_mixture": wandb.Image(dataset_traj_image)}), log_kwargs={"wandb": {"commit": False}})
dataset_weights = batch_sampler.generate_tasks_distribution().cpu().numpy()
dataset_weight_image = data_sampler.make_dataset_pie_plot(domains_list, dataset_weights)
accelerator.log(({"dataset_mixture_weight": wandb.Image(dataset_weight_image)}), log_kwargs={"wandb": {"commit": False}})
train_dataloader = DataLoader(combined_dataset, batch_sampler=batch_sampler, collate_fn=collate_fn,
num_workers=24, pin_memory=False)
batch_val_sampler = data_sampler.MultiTaskBatchSampler(
val_dataset_num_samples,
batch_size=args.per_device_train_batch_size,
temperature=4. # the higher the more flat the distribution
)
combined_val_dataset = torch.utils.data.ConcatDataset(val_datasets)
eval_dataloader = DataLoader(combined_val_dataset, batch_sampler=batch_val_sampler, collate_fn=collate_fn,
num_workers=24, pin_memory=False)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
if args.max_train_steps < 2000 and args.resume_from_checkpoint is None: # minimal number of trainng steps
args.max_train_steps = 2000
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if args.lr_scheduler_type == "custom_cosine": # decay to `end_ratio` of the peak learning rate
def get_lr_wrapper(warmup_steps, max_steps, end_ratio=0.1):
def get_lr(step):
if step < warmup_steps:
return (step + 1) / warmup_steps
remaining_steps = max_steps - warmup_steps
return ((1 + math.cos(math.pi * (step - warmup_steps) / remaining_steps)) / 2) \
* (1 - end_ratio) + end_ratio
return get_lr
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer, get_lr_wrapper(args.num_warmup_steps * accelerator.num_processes,
args.max_train_steps if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes)
)
else:
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes,
)
# Enable gradient checkpointing to save memory
if args.gradient_checkpointing:
logger.info("Enabling gradient checkpointing")
model.gradient_checkpointing_enable()
model.config.use_cache = False # incompatible with grad checkpointing
# Prepare everything with our `accelerator`.
accelerator.wait_for_everyone()
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
if not args.no_compile:
torch._dynamo.config.cache_size_limit = 256
torch._dynamo.config.optimize_ddp = False # https://github.com/pytorch/pytorch/issues/104674
# TODO: https://github.com/pytorch/pytorch/issues/109774#issuecomment-2046633776
model = torch.compile(model)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initialize automatically on the main process.
experiment_config = vars(args) | vars(config)
seq_len = shared_metadata["h"] * shared_metadata["w"] * args.window_size
effective_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps \
* accelerator.num_processes
args.num_datasets = len(train_datasets)
model_module = model.module if hasattr(model, "module") else model
experiment_config.update(shared_metadata | {
"model_parameters": sum(p.numel() for p in model.parameters()),
"model_parameters_M": round(sum(p.numel() for p in model.parameters()) / 1e6),
"trunk_parameters": sum(p.numel() for p in model_module.decoder.parameters()),
"trunk_parameters_M": round(sum(p.numel() for p in model_module.decoder.parameters()) / 1e6),
"seq_len": seq_len,
"train_data_tokens": len(train_dataset) * seq_len,
"effective_batch_size": effective_batch_size,
"effective_batch_size_tokens": effective_batch_size * seq_len,
"mixed_precision": accelerator.mixed_precision,
"num_datasets": args.num_datasets
})
experiment_config["FLOPs_per_update_step"] = 6 * experiment_config["model_parameters"] \
* experiment_config["effective_batch_size_tokens"]
accelerator.init_trackers(project_name="video", config=experiment_config)
# Train!
train(accelerator, model, optimizer, lr_scheduler, train_dataloader, eval_dataloader, experiment_config, config, args)
if __name__ == "__main__":
main()
|