File size: 7,725 Bytes
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.nn as nn

from magvit2.config import VQConfig


def swish(x):
    # swish
    return x*torch.sigmoid(x)


class ResBlock(nn.Module):
    def __init__(self, 
                 in_filters,
                 out_filters,
                 use_conv_shortcut = False
                 ) -> None:
        super().__init__()

        self.in_filters = in_filters
        self.out_filters = out_filters
        self.use_conv_shortcut = use_conv_shortcut

        self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6)
        self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6)

        self.conv1 = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
        self.conv2 = nn.Conv2d(out_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)

        if in_filters != out_filters:
            if self.use_conv_shortcut:
                self.conv_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
            else:
                self.nin_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(1, 1), padding=0, bias=False)

    def forward(self, x, **kwargs):
        residual = x

        x = self.norm1(x)
        x = swish(x)
        x = self.conv1(x)
        x = self.norm2(x)
        x = swish(x)
        x = self.conv2(x)
        if self.in_filters != self.out_filters:
            if self.use_conv_shortcut:
                residual = self.conv_shortcut(residual)
            else:
                residual = self.nin_shortcut(residual)

        return x + residual


class Encoder(nn.Module):
    def __init__(
        # self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4),
        self, config: VQConfig,
    ):
        super().__init__()

        self.in_channels = config.in_channels
        self.z_channels = config.z_channels

        self.num_res_blocks = config.num_res_blocks
        self.num_blocks = len(config.ch_mult)
        
        self.conv_in = nn.Conv2d(
            config.in_channels,
            config.base_channels,
            kernel_size=(3, 3),
            padding=1,
            bias=False
        )

        ## construct the model
        self.down = nn.ModuleList()

        in_ch_mult = (1,) + tuple(config.ch_mult)
        for i_level in range(self.num_blocks):
            block = nn.ModuleList()
            block_in = config.base_channels * in_ch_mult[i_level]  # [1, 1, 2, 2, 4]
            block_out = config.base_channels * config.ch_mult[i_level]  # [1, 2, 2, 4]
            for _ in range(self.num_res_blocks):
                block.append(ResBlock(block_in, block_out))
                block_in = block_out
            
            down = nn.Module()
            down.block = block
            if i_level < self.num_blocks - 1:
                down.downsample = nn.Conv2d(block_out, block_out, kernel_size=(3, 3), stride=(2, 2), padding=1)

            self.down.append(down)
        
        ### mid
        self.mid_block = nn.ModuleList()
        for res_idx in range(self.num_res_blocks):
            self.mid_block.append(ResBlock(block_in, block_in))
        
        ### end
        self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6)
        self.conv_out = nn.Conv2d(block_out, config.z_channels, kernel_size=(1, 1))
            
    def forward(self, x):
        ## down
        x = self.conv_in(x)
        for i_level in range(self.num_blocks):
            for i_block in range(self.num_res_blocks):
                x = self.down[i_level].block[i_block](x)
            
            if i_level < self.num_blocks - 1:
                x = self.down[i_level].downsample(x)
        
        ## mid 
        for res in range(self.num_res_blocks):
            x = self.mid_block[res](x)

        x = self.norm_out(x)
        x = swish(x)
        x = self.conv_out(x)

        return x


class Decoder(nn.Module):
    # def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4)) -> None:
    def __init__(self, config: VQConfig) -> None:
        super().__init__()

        self.base_channels = config.base_channels
        self.num_blocks = len(config.ch_mult)
        self.num_res_blocks = config.num_res_blocks

        block_in = self.base_channels * config.ch_mult[self.num_blocks - 1]

        self.conv_in = nn.Conv2d(
            config.z_channels, block_in, kernel_size=(3, 3), padding=1, bias=True
        )

        self.mid_block = nn.ModuleList()
        for res_idx in range(self.num_res_blocks):
            self.mid_block.append(ResBlock(block_in, block_in))
        
        self.up = nn.ModuleList()

        for i_level in reversed(range(self.num_blocks)):
            block = nn.ModuleList()
            block_out = self.base_channels * config.ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResBlock(block_in, block_out))
                block_in = block_out
            
            up = nn.Module()
            up.block = block
            if i_level > 0:
                up.upsample = Upsampler(block_in)
            self.up.insert(0, up)
        
        self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6)

        self.conv_out = nn.Conv2d(block_in, config.out_channels, kernel_size=(3, 3), padding=1)
    
    def forward(self, z):

        z = self.conv_in(z)

        ## mid
        for res in range(self.num_res_blocks):
            z = self.mid_block[res](z)
        
        ## upsample
        for i_level in reversed(range(self.num_blocks)):
            for i_block in range(self.num_res_blocks):
                z = self.up[i_level].block[i_block](z)
            
            if i_level > 0:
                z = self.up[i_level].upsample(z)
        
        z = self.norm_out(z)
        z = swish(z)
        z = self.conv_out(z)

        return z


def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor:
    """ Depth-to-Space DCR mode (depth-column-row) core implementation.

        Args:
            x (torch.Tensor): input tensor. The channels-first (*CHW) layout is supported.
            block_size (int): block side size
    """
    # check inputs
    if x.dim() < 3:
        raise ValueError(
            f"Expecting a channels-first (*CHW) tensor of at least 3 dimensions"
        )
    c, h, w = x.shape[-3:]

    s = block_size**2
    if c % s != 0:
        raise ValueError(
            f"Expecting a channels-first (*CHW) tensor with C divisible by {s}, but got C={c} channels"
        )

    outer_dims = x.shape[:-3]

    # splitting two additional dimensions from the channel dimension
    x = x.view(-1, block_size, block_size, c // s, h, w)

    # putting the two new dimensions along H and W
    x = x.permute(0, 3, 4, 1, 5, 2)

    # merging the two new dimensions with H and W
    x = x.contiguous().view(*outer_dims, c // s, h * block_size,
                            w * block_size)

    return x


class Upsampler(nn.Module):
    def __init__(
        self,
        dim,
        dim_out = None
    ):
        super().__init__()
        dim_out = dim * 4
        self.conv1 = nn.Conv2d(dim, dim_out, (3, 3), padding=1)
        self.depth2space = depth_to_space

    def forward(self, x):
        """
        input_image: [B C H W]
        """
        out = self.conv1(x)
        out = self.depth2space(out, block_size=2)
        return out
        

# if __name__ == "__main__":
#     x = torch.randn(size = (2, 3, 128, 128))
#     encoder = Encoder(ch=128, in_channels=3, num_res_blocks=2, z_channels=18, out_ch=3, resolution=128)
#     decoder = Decoder(out_ch=3, z_channels=18, num_res_blocks=2, ch=128, in_channels=3, resolution=128)
#     z = encoder(x)
#     out = decoder(z)