Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,278 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import numpy as np
import cv2
import torch
import einops
from genie.st_mask_git import STMaskGIT
from genie.st_mar import STMAR
from datasets.utils import get_image_encoder
from diffusion_policy import diffusion_policy_factory
from data import DATA_FREQ_TABLE
from train_diffusion import SVD_SCALE
from typing import Optional, Tuple, List, Dict, Any
import os
class Policy:
def generate_action(self, obs):
raise NotImplementedError
def reset(self):
pass
class RandomPolicy(Policy):
def __init__(self):
super().__init__()
class TeleopPolicy(Policy):
def __init__(self):
super().__init__()
class LearnedPolicy(Policy):
def __init__(self):
super().__init__()
class ReplayPolicy(Policy):
def __init__(self,
actions: np.ndarray, # (T * S, A)
action_stride: int = 1,
prompt_horizon: int = 0,
):
super().__init__()
T = len(actions) // action_stride
self.actions = actions[:T * action_stride
].reshape(T, action_stride, actions.shape[-1])
self.action_idx = prompt_horizon
self.prompt_horizon = prompt_horizon
self.action_stride = action_stride
assert self.action_idx < len(self.actions)
def __len__(self):
return len(self.actions) - self.prompt_horizon
def generate_action(self, obs):
assert self.action_idx < len(self.actions)
action = self.actions[self.action_idx]
self.action_idx = self.action_idx + 1
return action
def reset(self): # return current action = last action of prompt
self.action_idx = self.prompt_horizon
return self.prompt()[-1]
def prompt(self):
return self.actions[:self.prompt_horizon]
class RandomJointPositionPolicy(RandomPolicy):
def __init__(self, action_bounds: Tuple[np.ndarray, np.ndarray]):
self.lb = action_bounds[0]
self.ub = action_bounds[1]
self.action_dim = action_bounds[0].shape[0]
def generate_action(self, obs):
return np.random.uniform(self.lb, self.ub)
class TeleopJointPositionPolicy(TeleopPolicy):
"""
Example usage:
teleop = TeleopJointPositionPolicy(
initial_position=[0, 0, 0, 0, 0, 0, 0],
increment=0.1,
keyboard_bindings=['q', 'w', 'e', 'r', 't', 'y', 'u'],
return_delta=False
)
while True:
print(teleop.generate_action(None))
"""
def __init__(self,
initial_position: List[float], # initial position for each joint
increment: float, # increment for each joint
keyboard_bindings: List[str], # list of keyboard bindings for each joint
# shift + key for negative direction
return_delta: bool = False, # if True, return delta instead of absolute position
):
super().__init__()
self.increment = increment
self.pos_keys = keyboard_bindings
self.neg_keys = [self._shift_key(key) for key in keyboard_bindings]
self.action_dim = len(keyboard_bindings)
self.return_delta = return_delta
self.current_position = np.array(initial_position)
self.shift_pressed = False
self.delta_position = np.zeros(self.action_dim)
def generate_action(self, obs):
while (user_input := input('Waiting for input: ')) not in self.pos_keys + self.neg_keys:
print(f'Invalid input {user_input}')
is_pos = user_input in self.pos_keys
joint_idx = self.pos_keys.index(user_input) if is_pos else self.neg_keys.index(user_input)
self.delta_position[joint_idx] = self.increment * (1 if is_pos else -1)
curr_pos = self.current_position
delta_pos = self.delta_position
# update current position and reset delta
self.current_position += self.delta_position
self.delta_position = np.zeros(self.action_dim)
if self.return_delta:
return delta_pos
else:
return curr_pos
def _shift_key(self, key):
if key.isalpha():
return key.upper()
return {
'1': '!', '2': '@', '3': '#', '4': '$', '5': '%',
'6': '^', '7': '&', '8': '*', '9': '(', '0': ')',
'-': '_', '=': '+', '[': '{', ']': '}', '\\': '|',
';': ':', "'": '"', ',': '<', '.': '>', '/': '?',
'`': '~'
}.get(key, key)
class RandomPlanarQuadDirectionalPolicy(RandomPolicy):
def __init__(self, increment: float = 0.5):
self.increment = increment
def generate_action(self, obs):
actions = [
np.array([0, self.increment]),
np.array([0, -self.increment]),
np.array([self.increment, 0]),
np.array([-self.increment, 0])
]
return actions[np.random.choice(4)]
class TeleopPlanarQuadDirectionalPolicy(TeleopPolicy):
# control with: w, a, s, d
def __init__(self,
increment: float = 0.5, # increment for each direction
):
super().__init__()
self.increment = increment
def generate_action(self, obs):
while (user_input := input('Waiting for input: ')) not in ['w', 'a', 's', 'd']:
print(f'Invalid input {user_input}')
# follow IRASIM's convention
if user_input == 'd':
return np.array([0, self.increment])
elif user_input == 'a':
return np.array([0, -self.increment])
elif user_input == 's':
return np.array([self.increment, 0])
elif user_input == 'w':
return np.array([-self.increment, 0])
class GeniePolicy(LearnedPolicy):
average_delta_psnr_over = 5
def __init__(self,
# image preprocessing
max_image_resolution: int = 1024,
resize_image: bool = True,
resize_image_resolution: int = 256,
# tokenizer setting
image_encoder_type: str = "magvit",
image_encoder_ckpt: str = "data/magvit2.ckpt",
quantize: bool = True,
quantization_slice_size: int = 16,
# dynamics backbone setting
backbone_type: str = "stmaskgit",
backbone_ckpt: str = "data/genie_model/final_checkpt",
prompt_horizon: int = 4,
prediction_horizon: int = 4,
execution_horizon: int = 2, # half of the prediction context
inference_iterations: Optional[int] = None,
sampling_temperature: float = 0.0,
action_stride: Optional[int] = None,
domain: str = "robomimic",
genie_frequency: int = 2,
diffusion_steps=10,
# misc
is_full_dynamics: bool = False,
device: str = 'cuda',
use_raw_image=False,
):
super().__init__()
assert quantize == (image_encoder_type == "magvit"), \
"Currently quantization if and only if magvit is the image encoder."
assert image_encoder_type in ["magvit", "temporalvae"], \
"Image encoder type must be either 'magvit' or 'temporalvae'."
assert not quantize or image_encoder_type == "magvit", \
"If quantize is enabled, image encoder type must be 'magvit'."
assert backbone_type in ["stmaskgit", "stmar"], \
"Backbone type must be either 'stmaskgit' or 'stmar'."
if action_stride is None:
action_stride = DATA_FREQ_TABLE[domain] // genie_frequency
if inference_iterations is None:
if backbone_type == "stmaskgit":
inference_iterations = 2
elif backbone_type == "stmar":
inference_iterations = 2
# misc
self.use_raw_image = use_raw_image
self.device = torch.device(device)
self.is_full_dynamics = is_full_dynamics
self.prediction_horizon = prediction_horizon
self.execution_horizon = execution_horizon
self.open_loop_step = self.execution_horizon - 1
# image preprocessing
self.max_image_resolution = max_image_resolution
self.resize_image = resize_image
self.resize_image_resolution = resize_image_resolution
# load image encoder
self.image_encoding_dtype = torch.bfloat16
self.quantize = quantize
self.quant_slice_size = quantization_slice_size
self.image_encoder_type = image_encoder_type
self.image_encoder = get_image_encoder(
image_encoder_type,
image_encoder_ckpt
).to(device=self.device, dtype=self.image_encoding_dtype).eval()
# load STMaskGIT model (STMAR is inherited from STMaskGIT)
self.prompt_horizon = prompt_horizon
self.domain = domain
self.genie_frequency = genie_frequency
self.inference_iterations = inference_iterations
self.sampling_temperature = sampling_temperature
self.action_stride = action_stride
self.backbone_type = backbone_type
if not os.path.exists(backbone_ckpt + "/config.json"):
# search and find the latest modified checkpoint folder
dirs = [os.path.join(backbone_ckpt, f.name) for f in os.scandir(backbone_ckpt) if f.is_dir()]
dirs.sort(key=os.path.getctime)
backbone_ckpt = dirs[-1]
print("backbone_ckpt:", backbone_ckpt)
if backbone_type == "stmaskgit":
self.backbone = STMaskGIT.from_pretrained(backbone_ckpt)
else:
self.backbone = STMAR.from_pretrained(backbone_ckpt)
self.backbone.action_diff_losses[domain].gen_diffusion.num_timesteps = diffusion_steps
self.backbone.diffloss.gen_diffusion.num_timesteps = diffusion_steps
self.backbone = self.backbone.to(device=self.device).eval()
# history buffer, i.e., the input to the model
self.cached_actions = None # (prompt_horizon, action_stride, A)
self.cached_latent_frames = None # (prompt_horizon, ...)
self.init_prompt = None # (prompt_frames, prompt_actions)
# report model size
print(
"================ Model Size Report ================\n"
f" encoder size: {sum(p.numel() for p in self.image_encoder.parameters()) / 1e6:.3f}M \n"
f" backbone size: {sum(p.numel() for p in self.backbone.parameters()) / 1e6:.3f}M\n"
"==================================================="
)
def set_initial_state(self, state: Tuple[np.ndarray, np.ndarray]):
self.init_prompt = state
@torch.inference_mode()
def generate_action(self, obs: Dict[str, Any]) -> np.ndarray:
# obs: {'image': np.ndarray (H, W, 3), ...}
# return: np.ndarray (stride, A)
assert self.cached_latent_frames is not None, "Model is not prompted yet."
this_image = obs['image']
# encode
this_latent = self._encode_image(this_image)
# update cache for the current image. prompt_horizon+1 timesteps
self.cached_latent_frames = torch.cat([self.cached_latent_frames, this_latent.unsqueeze(0)]).to(torch.float32)
# new video tokens. s_t-prompt_horizon to s_t+1, s_t+1 to s_t+execution_horizon are masked tokens
mask_tokens = torch.zeros(self.execution_horizon - 1, *self.cached_latent_frames.shape[1:],
dtype=self.cached_latent_frames.dtype,
device=self.device)
input_latent_states = torch.cat([self.cached_latent_frames, mask_tokens]).unsqueeze(0).to(torch.float32) # add batch dimension
# new action tokens. a_t-prompt_horizon to a_t, a_t to a_t+execution_horizon are masked tokens
self.cached_actions = torch.cat([
self.cached_actions, torch.zeros(self.execution_horizon, *self.cached_actions.shape[1:],
dtype=self.cached_actions.dtype,
device=self.device)]).to(torch.float32)
cached_actions = einops.rearrange(self.cached_actions, "h b c -> b h c")
action_mask = torch.zeros(cached_actions.shape[0], cached_actions.shape[1], 1, 1,
dtype=self.cached_actions.dtype, device=self.device)
action_mask[:, self.prompt_horizon:] = 1
# dtype conversion and mask token
if self.backbone_type == "stmaskgit":
input_latent_states = input_latent_states.long()
input_latent_states[:, self.prompt_horizon + 1:] = self.backbone.mask_token_id
# we should experiment with the other way to do this as well
# cached_actions[:, self.prompt_horizon:] = self.backbone.action_mask_tokens
elif self.backbone_type == "stmar":
input_latent_states[:, self.prompt_horizon + 1:] = self.backbone.mask_token
# cached_actions[:, self.prompt_horizon:] = self.backbone.action_mask_tokens
if self.open_loop_step != self.execution_horizon - 1:
self.open_loop_step += 1
else:
cached_actions = cached_actions[:, -input_latent_states.shape[1]:]
if self.execution_horizon == 1:
self.pred_action = self.backbone.maskgit_generate(
input_latent_states,
out_t=self.prompt_horizon,
maskgit_steps=self.inference_iterations,
temperature=self.sampling_temperature,
action_ids=cached_actions, # if self.is_full_dynamics else None
domain=[self.domain],
action_mask=action_mask
)[-1].squeeze(0)
else:
self.pred_action = self.backbone.maskgit_generate_horizon(
input_latent_states,
out_t_min=self.prompt_horizon,
out_t_max=self.prompt_horizon + self.execution_horizon,
maskgit_steps=self.inference_iterations,
temperature=self.sampling_temperature,
action_ids=cached_actions, # if self.is_full_dynamics else None
domain=[self.domain],
action_mask=action_mask
)[-1].squeeze(0)
self.open_loop_step = 0
pred_action = self.pred_action[self.prompt_horizon+self.open_loop_step:self.prompt_horizon+self.open_loop_step+1]
self.cached_actions = torch.cat([self.cached_actions, pred_action.unsqueeze(0)]).to(torch.float32)
self.cached_actions = self.cached_actions[-self.prompt_horizon:]
self.cached_latent_frames = self.cached_latent_frames[-self.prompt_horizon:]
return pred_action.detach().cpu().numpy()
@torch.inference_mode()
def _encode_image(self, image: np.ndarray) -> torch.Tensor:
# (H, W, 3)
if self.quantize:
image = torch.from_numpy(
self._normalize_image(image).transpose(2, 0, 1)
).to(device=self.device, dtype=self.image_encoding_dtype
).unsqueeze(0)
H, W = image.shape[-2:]
H //= self.quant_slice_size
W //= self.quant_slice_size
_, _, indices, _ = self.image_encoder.encode(image, flip=True)
indices = einops.rearrange(indices, "(h w) -> h w", h=H, w=W)
indices = indices.to(torch.int32)
return indices
elif self.use_raw_image:
image = torch.from_numpy(image).permute(2, 0, 1)
norm_image = torch.nn.functional.interpolate(image[None] / 255.0, (32, 32)) - 0.5
norm_image = einops.rearrange(norm_image, "b c h w -> b h w c")
norm_image = norm_image.squeeze(0).to(torch.float32).to(self.device)
return norm_image
else:
image = torch.from_numpy(
self._normalize_image(image).transpose(2, 0, 1)
).to(device=self.device, dtype=self.image_encoding_dtype
).unsqueeze(0)
H, W = image.shape[-2:]
if self.image_encoder_type == "magvit":
latent = self.image_encoder.encode_without_quantize(image)
elif self.image_encoder_type == "temporalvae":
latent_dist = self.image_encoder.encode(image).latent_dist
latent = latent_dist.mean
latent *= SVD_SCALE
latent = einops.rearrange(latent, "b c h w -> b h w c")
else:
pass
latent = latent.squeeze(0).to(torch.float32)
return latent
def _normalize_image(self, image: np.ndarray) -> np.ndarray:
# (H, W, 3) normalized to [-1, 1]
# if `resize`, resize the shorter side to `resized_res`
# and then do a center crop
image = np.asarray(image, dtype=np.float32)
image /= 255.
H, W = image.shape[:2]
# resize if asked
if self.resize_image:
resized_res = self.resize_image_resolution
if H < W:
Hnew, Wnew = resized_res, int(resized_res * W / H)
else:
Hnew, Wnew = int(resized_res * H / W), resized_res
image = cv2.resize(image, (Wnew, Hnew))
# center crop
H, W = image.shape[:2]
Hstart = (H - resized_res) // 2
Wstart = (W - resized_res) // 2
image = image[Hstart:Hstart + resized_res, Wstart:Wstart + resized_res]
# resize if resolution is too large
elif H > self.max_image_resolution or W > self.max_image_resolution:
if H < W:
Hnew, Wnew = int(self.max_image_resolution * H / W), self.max_image_resolution
else:
Hnew, Wnew = self.max_image_resolution, int(self.max_image_resolution * W / H)
image = cv2.resize(image, (Wnew, Hnew))
image = (image * 2 - 1.)
return image
def reset(self) -> np.ndarray:
# if ground truth physics simulator is provided,
# return the the side-by-side concatenated image
assert self.init_prompt is not None, "Initial state is not set."
prompt_frames, prompt_actions = self.init_prompt
current_image = prompt_frames[-1]
prompt_actions = torch.from_numpy(prompt_actions
).to(device=self.device, dtype=torch.float32)
self.cached_actions = prompt_actions
# convert to latent
self.cached_latent_frames = torch.stack([
self._encode_image(frame) for frame in prompt_frames
], axis=0)
if self.resize_image:
current_image = cv2.resize(current_image,
(self.resize_image_resolution, self.resize_image_resolution))
return current_image
def close(self):
pass
@property
def dt(self):
return 1.0 / self.genie_frequency
class DiffusionPolicy(LearnedPolicy):
def __init__(self, checkpoint: str):
super().__init__()
self.policy = diffusion_policy_factory(checkpoint)
def __getattr__(self, name):
try:
return self.__dict__[name]
except KeyError:
return getattr(self.policy, name)
def generate_action(self, obs):
return self.policy.predict_action(obs)
def reset(self):
pass
def close(self):
pass |