Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,023 Bytes
246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 8eeb719 246c106 8eeb719 246c106 8eeb719 246c106 8eeb719 246c106 8eeb719 246c106 b4e01e8 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 4c4632b 246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import cv2
import torch
import numpy as np
import einops
import skimage
import time
from genie.st_mask_git import STMaskGIT
from genie.st_mar import STMAR
from datasets.utils import get_image_encoder
from data import DATA_FREQ_TABLE
from train_diffusion import SVD_SCALE
from typing import Optional, Tuple, Callable, Dict
class Simulator:
def set_initial_state(self, state):
"""
the initial state of the simulated scene
e.g.
1. in robomimic, it's the scene state vector
2. in genie, it's the initial frames to prompt the model
"""
raise NotImplementedError
@torch.inference_mode()
def step(self, action):
raise NotImplementedError
def reset(self):
raise NotImplementedError
def close(self):
raise NotImplementedError
@property
def dt(self):
raise NotImplementedError
class PhysicsSimulator(Simulator):
def __init__(self):
super().__init__()
# physics engine should be able to update dt
def set_dt(self, dt):
raise NotImplementedError
# physics engine should be able to get scene state
# e.g., robot joint positions, object positions, etc.
def get_raw_state(self, port: Optional[str] = None):
raise NotImplementedError
@property
def action_dimension(self):
raise NotImplementedError
class LearnedSimulator(Simulator):
def __init__(self):
super().__init__()
# data replayed respect physics, so we inherit from PhysicsSimulator
# it can be considered as a special case of PhysicsSimulator
class ReplaySimulator(PhysicsSimulator):
def __init__(self,
frames,
prompt_horizon: int = 0,
dt: Optional[float] = None
):
super().__init__()
self.frames = frames
self.frame_idx = prompt_horizon
assert self.frame_idx < len(self.frames)
self._dt = dt
self.prompt_horizon = prompt_horizon
def __len__(self):
return len(self.frames) - self.prompt_horizon
def step(self, action):
frame = self.frames[self.frame_idx]
assert self.frame_idx < len(self.frames)
self.frame_idx = self.frame_idx + 1
return {
'pred_next_frame': frame
}
def reset(self): # return current frame = last frame of prompt
self.frame_idx = self.prompt_horizon
return self.prompt()[-1]
def prompt(self):
return self.frames[:self.prompt_horizon]
@property
def dt(self):
return self._dt
class GenieSimulator(LearnedSimulator):
average_delta_psnr_over = 5
def __init__(self,
# image preprocessing
max_image_resolution: int = 1024,
resize_image: bool = True,
resize_image_resolution: int = 256,
# tokenizer setting
image_encoder_type: str = "temporalvae",
image_encoder_ckpt: str = "stabilityai/stable-video-diffusion-img2vid",
quantize: bool = False,
quantization_slice_size: int = 16,
# dynamics backbone setting
backbone_type: str = "stmar",
backbone_ckpt: str = "data/mar_ckpt/robomimic",
prompt_horizon: int = 11,
inference_iterations: Optional[int] = None,
sampling_temperature: float = 0.0,
action_stride: Optional[int] = None,
domain: str = "robomimic",
genie_frequency: int = 2,
# misc
measure_step_time: bool = False,
compute_psnr: bool = False,
compute_delta_psnr: bool = False, # act as a signal for controlability
gaussian_action_perturbation_scale: Optional[float] = None,
device: str = 'cuda',
physics_simulator: Optional[PhysicsSimulator] = None,
physics_simulator_teacher_force: Optional[int] = None,
post_processor: Optional[Callable] = None, # on the predicted image, e.g., add action
allow_external_prompt: bool = False
):
super().__init__()
assert quantize == (image_encoder_type == "magvit"), \
"Currently quantization if and only if magvit is the image encoder."
assert image_encoder_type in ["magvit", "temporalvae"], \
"Image encoder type must be either 'magvit' or 'temporalvae'."
assert not quantize or image_encoder_type == "magvit", \
"If quantize is enabled, image encoder type must be 'magvit'."
assert backbone_type in ["stmaskgit", "stmar"], \
"Backbone type must be either 'stmaskgit' or 'stmar'."
if physics_simulator is None:
assert physics_simulator_teacher_force is None, \
"Physics simulator teacher force is only available when physics simulator is provided."
assert compute_psnr is False, \
"PSNR computation is only available when physics simulator is provided."
assert compute_delta_psnr is False, \
"Delta PSNR computation is only available when physics simulator is provided."
if action_stride is None:
action_stride = DATA_FREQ_TABLE[domain] // genie_frequency
if compute_delta_psnr:
compute_psnr = True # to compute delta psnr, psnr must be computed
if inference_iterations is None:
if backbone_type == "stmaskgit":
inference_iterations = 2
elif backbone_type == "stmar":
inference_iterations = 2
# misc
self.device = torch.device(device)
self.measure_step_time = measure_step_time
self.compute_psnr = compute_psnr
self.compute_delta_psnr = compute_delta_psnr
self.allow_external_prompt = allow_external_prompt
# image preprocessing
self.max_image_resolution = max_image_resolution
self.resize_image = resize_image
self.resize_image_resolution = resize_image_resolution
# load image encoder
self.image_encoding_dtype = torch.bfloat16
self.quantize = quantize
self.quant_slice_size = quantization_slice_size
self.image_encoder_type = image_encoder_type
self.image_encoder = get_image_encoder(
image_encoder_type,
image_encoder_ckpt
).to(device=self.device, dtype=self.image_encoding_dtype).eval()
# load STMaskGIT model (STMAR is inherited from STMaskGIT)
self.prompt_horizon = prompt_horizon
self.domain = domain
self.genie_frequency = genie_frequency
self.inference_iterations = inference_iterations
self.sampling_temperature = sampling_temperature
self.action_stride = action_stride
self.gauss_act_perturb_scale = gaussian_action_perturbation_scale
self.backbone_type = backbone_type
if backbone_type == "stmaskgit":
self.backbone = STMaskGIT.from_pretrained(backbone_ckpt)
else:
self.backbone = STMAR.from_pretrained(backbone_ckpt)
self.backbone = self.backbone.to(device=self.device).eval()
self.post_processor = post_processor
# load physics simulator if available
# the phys sim to get ground truth image,
# assume the phys sim has aligned prompt frames
self.gt_phys_sim = physics_simulator
self.gt_teacher_force = physics_simulator_teacher_force
# history buffer, i.e., the input to the model
self.cached_actions = None # (prompt_horizon, action_stride, A)
self.cached_latent_frames = None # (prompt_horizon, ...)
self.init_prompt = None # (prompt_frames, prompt_actions)
self.step_count = 0
# report model size
print(
"================ Model Size Report ================\n"
f" encoder size: {sum(p.numel() for p in self.image_encoder.parameters()) / 1e6:.3f}M \n"
f" backbone size: {sum(p.numel() for p in self.backbone.parameters()) / 1e6:.3f}M\n"
"==================================================="
)
def set_initial_state(self, state: Tuple[np.ndarray, np.ndarray]):
if not self.allow_external_prompt and self.gt_phys_sim is not None:
raise NotImplementedError("Initial state is set by the physics simulator.")
self.init_prompt = state
@torch.inference_mode()
def step(self, action: np.ndarray) -> Dict:
# action: (action_stride, A) OR (A,)
# return: (H, W, 3)
assert self.cached_latent_frames is not None and self.cached_actions is not None, \
"Model is not prompted yet. Please call `set_initial_state` first."
if action.ndim == 1:
action = np.tile(action, (self.action_stride, 1))
# perturb action
if self.gauss_act_perturb_scale is not None:
action = np.random.normal(action, self.gauss_act_perturb_scale)
# encoding
input_latent_states = torch.cat([
self.cached_latent_frames,
torch.zeros_like(self.cached_latent_frames[[0]]),
]).unsqueeze(0).to(torch.float32)
input_latent_states = input_latent_states[:, :self.prompt_horizon + 1]
# dtype conversion and mask token
if self.backbone_type == "stmaskgit":
input_latent_states = input_latent_states.long()
input_latent_states[:, -1] = self.backbone.mask_token_id
elif self.backbone_type == "stmar":
input_latent_states[:, -1] = self.backbone.mask_token
# dynamics rollout
action = torch.from_numpy(action).to(device=self.device)
input_actions = torch.cat([ # (1, prompt_horizon + 1, action_stride * A)
self.cached_actions,
action.unsqueeze(0),
action.unsqueeze(0) # the last action is not used, but we need a_{t-1}, s_{t-1} to predict s_t
]).view(1, -1, action.shape[-1]).to(torch.float32) # + 1
input_actions = input_actions[:, :self.prompt_horizon + 1]
if self.measure_step_time:
start_time = time.time()
pred_next_latent_state = self.backbone.maskgit_generate(
input_latent_states,
out_t=input_latent_states.shape[1] - 1,
maskgit_steps=self.inference_iterations,
temperature=self.sampling_temperature,
action_ids=input_actions,
domain=[self.domain]
)[0].squeeze(0)
# decoding
pred_next_frame = self._decode_image(pred_next_latent_state)
# timing
if self.measure_step_time:
end_time = time.time()
step_result = {'pred_next_frame': pred_next_frame,}
if self.measure_step_time:
step_result['step_time'] = end_time - start_time
# physics simulation
if self.gt_phys_sim is not None:
for a in action.cpu().numpy():
gt_result = self.gt_phys_sim.step(a)
gt_next_frame = cv2.resize(gt_result['pred_next_frame'], pred_next_frame.shape[:2])
step_result['gt_next_frame'] = gt_next_frame
gt_result.pop('pred_next_frame')
step_result.update(gt_result)
# gt state observation
try:
raw_state = self.gt_phys_sim.get_raw_state()
step_result.update(raw_state)
except NotImplementedError:
pass
# compute PSNR against ground truth
if self.compute_psnr:
psnr = skimage.metrics.peak_signal_noise_ratio(
image_true=gt_next_frame / 255.,
image_test=pred_next_frame / 255.,
data_range=1.0
)
step_result['psnr'] = psnr
# controlability metric
if self.compute_delta_psnr:
delta_psnr = 0.0
for _ in range(self.average_delta_psnr_over):
# re-mask the input latent states for masked prediction
if self.backbone_type == "stmaskgit":
input_latent_states = input_latent_states.long()
input_latent_states[:, self.prompt_horizon] = self.backbone.mask_token_id
elif self.backbone_type == "stmar":
input_latent_states[:, self.prompt_horizon] = self.backbone.mask_token
# sample random action from N(0, 1)
random_input_actions = torch.randn_like(input_actions)
random_pred_next_latent_state = self.backbone.maskgit_generate(
input_latent_states,
out_t=self.prompt_horizon,
maskgit_steps=self.inference_iterations,
temperature=self.sampling_temperature,
action_ids=random_input_actions,
domain=[self.domain],
skip_normalization=True
)[0].squeeze(0)
random_pred_next_frame = self._decode_image(random_pred_next_latent_state)
this_delta_psnr = step_result['psnr'] - skimage.metrics.peak_signal_noise_ratio(
image_true=gt_next_frame / 255.,
image_test=random_pred_next_frame / 255.,
data_range=1.0
)
delta_psnr += this_delta_psnr / self.average_delta_psnr_over
step_result['delta_psnr'] = delta_psnr
if self.gt_teacher_force is not None and self.step_count % self.gt_teacher_force == 0:
pred_next_latent_state = self._encode_image(gt_next_frame)
# update history buffer
self.cached_latent_frames = torch.cat([
self.cached_latent_frames[1:], pred_next_latent_state.unsqueeze(0)
])
self.cached_actions = torch.cat([
self.cached_actions[1:], action.unsqueeze(0)
])
# post processing
if self.post_processor is not None:
pred_next_frame = self.post_processor(pred_next_frame, action)
self.step_count += 1
return step_result
@torch.inference_mode()
def _encode_image(self, image: np.ndarray) -> torch.Tensor:
# (H, W, 3)
image = torch.from_numpy(
self._normalize_image(image).transpose(2, 0, 1)
).to(device=self.device, dtype=self.image_encoding_dtype
).unsqueeze(0)
H, W = image.shape[-2:]
if self.quantize:
H //= self.quant_slice_size
W //= self.quant_slice_size
_, _, indices, _ = self.image_encoder.encode(image, flip=True)
indices = einops.rearrange(indices, "(h w) -> h w", h=H, w=W)
indices = indices.to(torch.int32)
return indices
else:
if self.image_encoder_type == "magvit":
latent = self.image_encoder.encode_without_quantize(image)
elif self.image_encoder_type == "temporalvae":
latent_dist = self.image_encoder.encode(image).latent_dist
latent = latent_dist.mean
latent *= SVD_SCALE
latent = einops.rearrange(latent, "b c h w -> b h w c")
else:
pass
latent = latent.squeeze(0).to(torch.float32)
return latent
@torch.inference_mode()
def _decode_image(self, latent: torch.Tensor) -> np.ndarray:
# latent can be either quantized indices or raw latent
# return (H, W, 3)
latent = latent.to(device=self.device).unsqueeze(0)
if self.quantize:
latent = self.image_encoder.quantize.get_codebook_entry(
einops.rearrange(latent, "b h w -> b (h w)"),
bhwc=(*latent.shape, self.image_encoder.quantize.codebook_dim)
).flip(1)
latent = latent.to(device=self.device, dtype=self.image_encoding_dtype)
if self.image_encoder_type == "magvit":
decoded_image = self.image_encoder.decode(latent)
elif self.image_encoder_type == "temporalvae":
latent = einops.rearrange(latent, "b h w c -> b c h w")
latent /= SVD_SCALE
# HACK: clip for less visual artifacts
latent = torch.clamp(latent, -25, 25)
decoded_image = self.image_encoder.decode(latent, num_frames=1).sample
decoded_image = decoded_image.squeeze(0).to(torch.float32).detach().cpu().numpy()
decoded_image = self._unnormalize_image(decoded_image).transpose(1, 2, 0)
return decoded_image
def _normalize_image(self, image: np.ndarray) -> np.ndarray:
# (H, W, 3) normalized to [-1, 1]
# if `resize`, resize the shorter side to `resized_res`
# and then do a center crop
image = np.asarray(image, dtype=np.float32)
image /= 255.
H, W = image.shape[:2]
# resize if asked
if self.resize_image:
resized_res = self.resize_image_resolution
if H < W:
Hnew, Wnew = resized_res, int(resized_res * W / H)
else:
Hnew, Wnew = int(resized_res * H / W), resized_res
image = cv2.resize(image, (Wnew, Hnew))
# center crop
H, W = image.shape[:2]
Hstart = (H - resized_res) // 2
Wstart = (W - resized_res) // 2
image = image[Hstart:Hstart + resized_res, Wstart:Wstart + resized_res]
# resize if resolution is too large
elif H > self.max_image_resolution or W > self.max_image_resolution:
if H < W:
Hnew, Wnew = int(self.max_image_resolution * H / W), self.max_image_resolution
else:
Hnew, Wnew = self.max_image_resolution, int(self.max_image_resolution * W / H)
image = cv2.resize(image, (Wnew, Hnew))
image = (image * 2 - 1.)
return image
def _unnormalize_image(self, image: np.ndarray) -> np.ndarray:
# (H, W, 3) from [-1, 1] to [0, 255]
# NOTE: clip happens here
image = (image + 1.) * 127.5
image = np.clip(image, 0, 255).astype(np.uint8)
return image
def reset(self) -> np.ndarray:
# if ground truth physics simulator is provided,
# return the the side-by-side concatenated image
# get the initial prompt from the physics simulator if not yet set
if not self.allow_external_prompt and self.gt_phys_sim is not None:
image_prompt = np.tile(
self.gt_phys_sim.reset(), (self.prompt_horizon, 1, 1, 1)
).astype(np.uint8)
action_prompt = np.zeros(
(self.prompt_horizon, self.action_stride, self.gt_phys_sim.action_dimension)
).astype(np.float32)
else:
assert self.init_prompt is not None, "Initial state is not set."
image_prompt, action_prompt = self.init_prompt
# standardize the image
image_prompt = [self._unnormalize_image(self._normalize_image(frame)) for frame in image_prompt]
current_image = image_prompt[-1]
action_prompt = torch.from_numpy(action_prompt).to(device=self.device)
self.cached_actions = action_prompt
# convert to latent
self.cached_latent_frames = torch.stack([
self._encode_image(frame) for frame in image_prompt
], axis=0)
if self.resize_image:
current_image = cv2.resize(current_image,
(self.resize_image_resolution, self.resize_image_resolution))
if self.gt_phys_sim is not None:
current_image = np.concatenate([current_image, current_image], axis=1)
self.step_count = 0
return current_image
def close(self):
if self.gt_phys_sim is not None:
try:
self.gt_phys_sim.close()
except NotImplementedError:
pass
@property
def dt(self):
return 1.0 / self.genie_frequency
|