File size: 20,023 Bytes
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
4c4632b
246c106
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
4c4632b
246c106
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
4c4632b
 
 
246c106
 
 
 
 
 
 
 
4c4632b
246c106
 
4c4632b
246c106
 
 
 
 
 
 
4c4632b
246c106
 
 
4c4632b
246c106
 
4c4632b
246c106
 
 
 
4c4632b
 
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
4c4632b
246c106
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
8eeb719
246c106
 
8eeb719
 
246c106
 
 
8eeb719
246c106
8eeb719
246c106
 
 
 
 
8eeb719
 
 
 
246c106
 
 
 
 
b4e01e8
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
4c4632b
246c106
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4632b
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import cv2
import torch
import numpy as np
import einops
import skimage
import time

from genie.st_mask_git import STMaskGIT
from genie.st_mar import STMAR
from datasets.utils import get_image_encoder
from data import DATA_FREQ_TABLE
from train_diffusion import SVD_SCALE

from typing import Optional, Tuple, Callable, Dict


class Simulator:
    def set_initial_state(self, state):
        """
        the initial state of the simulated scene
        e.g.
        1. in robomimic, it's the scene state vector
        2. in genie, it's the initial frames to prompt the model
        """
        raise NotImplementedError

    @torch.inference_mode()
    def step(self, action):
        raise NotImplementedError

    def reset(self):
        raise NotImplementedError

    def close(self):
        raise NotImplementedError

    @property
    def dt(self):
        raise NotImplementedError


class PhysicsSimulator(Simulator):
    def __init__(self):
        super().__init__()

    # physics engine should be able to update dt
    def set_dt(self, dt):
        raise NotImplementedError

    # physics engine should be able to get scene state
    # e.g., robot joint positions, object positions, etc.
    def get_raw_state(self, port: Optional[str] = None):
        raise NotImplementedError

    @property
    def action_dimension(self):
        raise NotImplementedError


class LearnedSimulator(Simulator):
    def __init__(self):
        super().__init__()


# data replayed respect physics, so we inherit from PhysicsSimulator
# it can be considered as a special case of PhysicsSimulator
class ReplaySimulator(PhysicsSimulator):
    def __init__(self,
        frames,
        prompt_horizon: int = 0,
        dt: Optional[float] = None
    ):
        super().__init__()
        self.frames = frames
        self.frame_idx = prompt_horizon
        assert self.frame_idx < len(self.frames)
        self._dt = dt
        self.prompt_horizon = prompt_horizon

    def __len__(self):
        return len(self.frames) - self.prompt_horizon

    def step(self, action):
        frame = self.frames[self.frame_idx]
        assert self.frame_idx < len(self.frames)
        self.frame_idx = self.frame_idx + 1
        return {
            'pred_next_frame': frame
        }

    def reset(self):    # return current frame = last frame of prompt
        self.frame_idx = self.prompt_horizon
        return self.prompt()[-1]

    def prompt(self):
        return self.frames[:self.prompt_horizon]

    @property
    def dt(self):
        return self._dt




class GenieSimulator(LearnedSimulator):

    average_delta_psnr_over = 5

    def __init__(self,
        # image preprocessing
        max_image_resolution: int = 1024,
        resize_image: bool = True,
        resize_image_resolution: int = 256,
        # tokenizer setting
        image_encoder_type: str = "temporalvae",
        image_encoder_ckpt: str = "stabilityai/stable-video-diffusion-img2vid",
        quantize: bool = False,
        quantization_slice_size: int = 16,
        # dynamics backbone setting
        backbone_type: str = "stmar",
        backbone_ckpt: str = "data/mar_ckpt/robomimic",
        prompt_horizon: int = 11,
        inference_iterations: Optional[int] = None,
        sampling_temperature: float = 0.0,
        action_stride: Optional[int] = None,
        domain: str = "robomimic",
        genie_frequency: int = 2,
        # misc
        measure_step_time: bool = False,
        compute_psnr: bool = False,
        compute_delta_psnr: bool = False,   # act as a signal for controlability
        gaussian_action_perturbation_scale: Optional[float] = None,
        device: str = 'cuda',
        physics_simulator: Optional[PhysicsSimulator] = None,
        physics_simulator_teacher_force: Optional[int] = None,
        post_processor: Optional[Callable] = None, # on the predicted image, e.g., add action
        allow_external_prompt: bool = False
    ):
        super().__init__()

        assert quantize == (image_encoder_type == "magvit"), \
            "Currently quantization if and only if magvit is the image encoder."
        assert image_encoder_type in ["magvit", "temporalvae"], \
            "Image encoder type must be either 'magvit' or 'temporalvae'."
        assert not quantize or image_encoder_type == "magvit", \
            "If quantize is enabled, image encoder type must be 'magvit'."
        assert backbone_type in ["stmaskgit", "stmar"], \
            "Backbone type must be either 'stmaskgit' or 'stmar'."
        if physics_simulator is None:
            assert physics_simulator_teacher_force is None, \
                "Physics simulator teacher force is only available when physics simulator is provided."
            assert compute_psnr is False, \
                "PSNR computation is only available when physics simulator is provided."
            assert compute_delta_psnr is False, \
                "Delta PSNR computation is only available when physics simulator is provided."

        if action_stride is None:
            action_stride = DATA_FREQ_TABLE[domain] // genie_frequency
        if compute_delta_psnr:
            compute_psnr = True # to compute delta psnr, psnr must be computed
        if inference_iterations is None:
            if backbone_type == "stmaskgit":
                inference_iterations = 2
            elif backbone_type == "stmar":
                inference_iterations = 2

        # misc
        self.device = torch.device(device)
        self.measure_step_time = measure_step_time
        self.compute_psnr = compute_psnr
        self.compute_delta_psnr = compute_delta_psnr
        self.allow_external_prompt = allow_external_prompt

        # image preprocessing
        self.max_image_resolution = max_image_resolution
        self.resize_image = resize_image
        self.resize_image_resolution = resize_image_resolution

        # load image encoder
        self.image_encoding_dtype = torch.bfloat16
        self.quantize = quantize
        self.quant_slice_size = quantization_slice_size
        self.image_encoder_type = image_encoder_type
        self.image_encoder = get_image_encoder(
            image_encoder_type,
            image_encoder_ckpt
            ).to(device=self.device, dtype=self.image_encoding_dtype).eval()

        # load STMaskGIT model (STMAR is inherited from STMaskGIT)
        self.prompt_horizon = prompt_horizon
        self.domain = domain
        self.genie_frequency = genie_frequency
        self.inference_iterations = inference_iterations
        self.sampling_temperature = sampling_temperature
        self.action_stride = action_stride
        self.gauss_act_perturb_scale = gaussian_action_perturbation_scale
        self.backbone_type = backbone_type
        if backbone_type == "stmaskgit":
            self.backbone = STMaskGIT.from_pretrained(backbone_ckpt)
        else:
            self.backbone = STMAR.from_pretrained(backbone_ckpt)
        self.backbone = self.backbone.to(device=self.device).eval()

        self.post_processor = post_processor

        # load physics simulator if available
        # the phys sim to get ground truth image,
        # assume the phys sim has aligned prompt frames
        self.gt_phys_sim = physics_simulator
        self.gt_teacher_force = physics_simulator_teacher_force

        # history buffer, i.e., the input to the model
        self.cached_actions = None          # (prompt_horizon, action_stride, A)
        self.cached_latent_frames = None    # (prompt_horizon, ...)
        self.init_prompt = None             # (prompt_frames, prompt_actions)

        self.step_count = 0

        # report model size
        print(
            "================ Model Size Report ================\n"
            f"    encoder size: {sum(p.numel() for p in self.image_encoder.parameters()) / 1e6:.3f}M \n"
            f"    backbone size: {sum(p.numel() for p in self.backbone.parameters()) / 1e6:.3f}M\n"
            "==================================================="
        )


    def set_initial_state(self, state: Tuple[np.ndarray, np.ndarray]):
        if not self.allow_external_prompt and self.gt_phys_sim is not None:
            raise NotImplementedError("Initial state is set by the physics simulator.")
        self.init_prompt = state


    @torch.inference_mode()
    def step(self, action: np.ndarray) -> Dict:
        # action: (action_stride, A) OR (A,)
        # return: (H, W, 3)
        assert self.cached_latent_frames is not None and self.cached_actions is not None, \
            "Model is not prompted yet. Please call `set_initial_state` first."

        if action.ndim == 1:
            action = np.tile(action, (self.action_stride, 1))

        # perturb action
        if self.gauss_act_perturb_scale is not None:
            action = np.random.normal(action, self.gauss_act_perturb_scale)

        # encoding
        input_latent_states = torch.cat([
            self.cached_latent_frames,
            torch.zeros_like(self.cached_latent_frames[[0]]),
        ]).unsqueeze(0).to(torch.float32)

        input_latent_states = input_latent_states[:, :self.prompt_horizon + 1]

        # dtype conversion and mask token
        if self.backbone_type == "stmaskgit":
            input_latent_states = input_latent_states.long()
            input_latent_states[:, -1] = self.backbone.mask_token_id
        elif self.backbone_type == "stmar":
            input_latent_states[:, -1] = self.backbone.mask_token

        # dynamics rollout
        action = torch.from_numpy(action).to(device=self.device)
        input_actions = torch.cat([     # (1, prompt_horizon + 1, action_stride * A)
            self.cached_actions,
            action.unsqueeze(0),
            action.unsqueeze(0) # the last action is not used, but we need a_{t-1}, s_{t-1} to predict s_t
        ]).view(1, -1, action.shape[-1]).to(torch.float32) #  + 1
        input_actions = input_actions[:, :self.prompt_horizon + 1]

        if self.measure_step_time:
            start_time = time.time()
        pred_next_latent_state = self.backbone.maskgit_generate(
            input_latent_states,
            out_t=input_latent_states.shape[1] - 1,
            maskgit_steps=self.inference_iterations,
            temperature=self.sampling_temperature,
            action_ids=input_actions,
            domain=[self.domain]
        )[0].squeeze(0)

        # decoding
        pred_next_frame = self._decode_image(pred_next_latent_state)

        # timing
        if self.measure_step_time:
            end_time = time.time()

        step_result = {'pred_next_frame': pred_next_frame,}
        if self.measure_step_time:
            step_result['step_time'] = end_time - start_time

        # physics simulation
        if self.gt_phys_sim is not None:
            for a in action.cpu().numpy():
                gt_result = self.gt_phys_sim.step(a)
            gt_next_frame = cv2.resize(gt_result['pred_next_frame'], pred_next_frame.shape[:2])
            step_result['gt_next_frame'] = gt_next_frame
            gt_result.pop('pred_next_frame')
            step_result.update(gt_result)

            # gt state observation
            try:
                raw_state = self.gt_phys_sim.get_raw_state()
                step_result.update(raw_state)
            except NotImplementedError:
                pass

            # compute PSNR against ground truth
            if self.compute_psnr:
                psnr = skimage.metrics.peak_signal_noise_ratio(
                    image_true=gt_next_frame / 255.,
                    image_test=pred_next_frame / 255.,
                    data_range=1.0
                )
                step_result['psnr'] = psnr

            # controlability metric
            if self.compute_delta_psnr:
                delta_psnr = 0.0
                for _ in range(self.average_delta_psnr_over):
                    # re-mask the input latent states for masked prediction
                    if self.backbone_type == "stmaskgit":
                        input_latent_states = input_latent_states.long()
                        input_latent_states[:, self.prompt_horizon] = self.backbone.mask_token_id
                    elif self.backbone_type == "stmar":
                        input_latent_states[:, self.prompt_horizon] = self.backbone.mask_token
                    # sample random action from N(0, 1)
                    random_input_actions = torch.randn_like(input_actions)
                    random_pred_next_latent_state = self.backbone.maskgit_generate(
                        input_latent_states,
                        out_t=self.prompt_horizon,
                        maskgit_steps=self.inference_iterations,
                        temperature=self.sampling_temperature,
                        action_ids=random_input_actions,
                        domain=[self.domain],
                        skip_normalization=True
                    )[0].squeeze(0)
                    random_pred_next_frame = self._decode_image(random_pred_next_latent_state)
                    this_delta_psnr = step_result['psnr'] - skimage.metrics.peak_signal_noise_ratio(
                        image_true=gt_next_frame / 255.,
                        image_test=random_pred_next_frame / 255.,
                        data_range=1.0
                    )
                    delta_psnr += this_delta_psnr / self.average_delta_psnr_over
                step_result['delta_psnr'] = delta_psnr

            if self.gt_teacher_force is not None and self.step_count % self.gt_teacher_force == 0:
                pred_next_latent_state = self._encode_image(gt_next_frame)

        # update history buffer
        self.cached_latent_frames = torch.cat([
            self.cached_latent_frames[1:], pred_next_latent_state.unsqueeze(0)
        ])
        self.cached_actions = torch.cat([
            self.cached_actions[1:], action.unsqueeze(0)
        ])

        # post processing
        if self.post_processor is not None:
            pred_next_frame = self.post_processor(pred_next_frame, action)

        self.step_count += 1

        return step_result


    @torch.inference_mode()
    def _encode_image(self, image: np.ndarray) -> torch.Tensor:
        # (H, W, 3)
        image = torch.from_numpy(
            self._normalize_image(image).transpose(2, 0, 1)
            ).to(device=self.device, dtype=self.image_encoding_dtype
            ).unsqueeze(0)
        H, W = image.shape[-2:]

        if self.quantize:
            H //= self.quant_slice_size
            W //= self.quant_slice_size
            _, _, indices, _ = self.image_encoder.encode(image, flip=True)
            indices = einops.rearrange(indices, "(h w) -> h w", h=H, w=W)
            indices = indices.to(torch.int32)
            return indices

        else:
            if self.image_encoder_type == "magvit":
                latent = self.image_encoder.encode_without_quantize(image)
            elif self.image_encoder_type == "temporalvae":
                latent_dist = self.image_encoder.encode(image).latent_dist
                latent = latent_dist.mean
                latent *= SVD_SCALE
                latent = einops.rearrange(latent, "b c h w -> b h w c")
            else:
                pass
            latent = latent.squeeze(0).to(torch.float32)
            return latent


    @torch.inference_mode()
    def _decode_image(self, latent: torch.Tensor) -> np.ndarray:
        # latent can be either quantized indices or raw latent
        # return (H, W, 3)

        latent = latent.to(device=self.device).unsqueeze(0)

        if self.quantize:
            latent = self.image_encoder.quantize.get_codebook_entry(
                einops.rearrange(latent, "b h w -> b (h w)"),
                bhwc=(*latent.shape, self.image_encoder.quantize.codebook_dim)
            ).flip(1)

        latent = latent.to(device=self.device, dtype=self.image_encoding_dtype)
        if self.image_encoder_type == "magvit":
            decoded_image = self.image_encoder.decode(latent)
        elif self.image_encoder_type == "temporalvae":
            latent = einops.rearrange(latent, "b h w c -> b c h w")
            latent /= SVD_SCALE
            # HACK: clip for less visual artifacts
            latent = torch.clamp(latent, -25, 25)
            decoded_image = self.image_encoder.decode(latent, num_frames=1).sample
        decoded_image = decoded_image.squeeze(0).to(torch.float32).detach().cpu().numpy()
        decoded_image = self._unnormalize_image(decoded_image).transpose(1, 2, 0)
        return decoded_image


    def _normalize_image(self, image: np.ndarray) -> np.ndarray:
        # (H, W, 3) normalized to [-1, 1]
        # if `resize`, resize the shorter side to `resized_res`
        #   and then do a center crop

        image = np.asarray(image, dtype=np.float32)
        image /= 255.
        H, W = image.shape[:2]

        # resize if asked
        if self.resize_image:
            resized_res = self.resize_image_resolution
            if H < W:
                Hnew, Wnew = resized_res, int(resized_res * W / H)
            else:
                Hnew, Wnew = int(resized_res * H / W), resized_res
            image = cv2.resize(image, (Wnew, Hnew))

            # center crop
            H, W = image.shape[:2]
            Hstart = (H - resized_res) // 2
            Wstart = (W - resized_res) // 2
            image = image[Hstart:Hstart + resized_res, Wstart:Wstart + resized_res]

        # resize if resolution is too large
        elif H > self.max_image_resolution or W > self.max_image_resolution:
            if H < W:
                Hnew, Wnew = int(self.max_image_resolution * H / W), self.max_image_resolution
            else:
                Hnew, Wnew = self.max_image_resolution, int(self.max_image_resolution * W / H)
            image = cv2.resize(image, (Wnew, Hnew))

        image = (image * 2 - 1.)
        return image


    def _unnormalize_image(self, image: np.ndarray) -> np.ndarray:
        # (H, W, 3) from [-1, 1] to [0, 255]
        # NOTE: clip happens here
        image = (image + 1.) * 127.5
        image = np.clip(image, 0, 255).astype(np.uint8)
        return image


    def reset(self) -> np.ndarray:
        # if ground truth physics simulator is provided,
        # return the the side-by-side concatenated image

        # get the initial prompt from the physics simulator if not yet set
        if not self.allow_external_prompt and self.gt_phys_sim is not None:
            image_prompt = np.tile(
                self.gt_phys_sim.reset(), (self.prompt_horizon, 1, 1, 1)
            ).astype(np.uint8)
            action_prompt = np.zeros(
                (self.prompt_horizon, self.action_stride, self.gt_phys_sim.action_dimension)
            ).astype(np.float32)
        else:
            assert self.init_prompt is not None, "Initial state is not set."
            image_prompt, action_prompt = self.init_prompt

        # standardize the image
        image_prompt = [self._unnormalize_image(self._normalize_image(frame)) for frame in image_prompt]

        current_image = image_prompt[-1]

        action_prompt = torch.from_numpy(action_prompt).to(device=self.device)
        self.cached_actions = action_prompt

        # convert to latent
        self.cached_latent_frames = torch.stack([
            self._encode_image(frame) for frame in image_prompt
        ], axis=0)

        if self.resize_image:
            current_image = cv2.resize(current_image,
                (self.resize_image_resolution, self.resize_image_resolution))

        if self.gt_phys_sim is not None:
            current_image = np.concatenate([current_image, current_image], axis=1)

        self.step_count = 0

        return current_image


    def close(self):
        if self.gt_phys_sim is not None:
            try:
                self.gt_phys_sim.close()
            except NotImplementedError:
                pass


    @property
    def dt(self):
        return 1.0 / self.genie_frequency