Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,805 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
"""
Modified Open-MAGVIT2 code to use VQConfig.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from magvit2.config import VQConfig
from magvit2.modules.losses.lpips import LPIPS
from magvit2.modules.discriminator.model import NLayerDiscriminator, weights_init
class DummyLoss(nn.Module):
def __init__(self):
super().__init__()
def adopt_weight(weight, global_step, threshold=0, value=0.):
if global_step < threshold:
weight = value
return weight
def hinge_d_loss(logits_real, logits_fake):
loss_real = torch.mean(F.relu(1. - logits_real))
loss_fake = torch.mean(F.relu(1. + logits_fake))
d_loss = 0.5 * (loss_real + loss_fake)
return d_loss
def vanilla_d_loss(logits_real, logits_fake):
d_loss = 0.5 * (
torch.mean(torch.nn.functional.softplus(-logits_real)) +
torch.mean(torch.nn.functional.softplus(logits_fake)))
return d_loss
def _sigmoid_cross_entropy_with_logits(labels, logits):
"""
non-saturating loss
"""
zeros = torch.zeros_like(logits, dtype=logits.dtype)
condition = (logits >= zeros)
relu_logits = torch.where(condition, logits, zeros)
neg_abs_logits = torch.where(condition, -logits, logits)
return relu_logits - logits * labels + torch.log1p(torch.exp(neg_abs_logits))
def non_saturate_gen_loss(logits_fake):
"""
logits_fake: [B 1 H W]
"""
B, _, _, _ = logits_fake.shape
logits_fake = logits_fake.reshape(B, -1)
logits_fake = torch.mean(logits_fake, dim=-1)
gen_loss = torch.mean(_sigmoid_cross_entropy_with_logits(
labels = torch.ones_like(logits_fake), logits=logits_fake
))
return gen_loss
def non_saturate_discriminator_loss(logits_real, logits_fake):
B, _, _, _ = logits_fake.shape
logits_real = logits_fake.reshape(B, -1)
logits_fake = logits_fake.reshape(B, -1)
logits_fake = logits_fake.mean(dim=-1)
logits_real = logits_real.mean(dim=-1)
real_loss = _sigmoid_cross_entropy_with_logits(
labels=torch.ones_like(logits_real), logits=logits_real)
fake_loss = _sigmoid_cross_entropy_with_logits(
labels= torch.zeros_like(logits_fake), logits=logits_fake
)
discr_loss = real_loss.mean() + fake_loss.mean()
return discr_loss
class LeCAM_EMA(object):
def __init__(self, init=0., decay=0.999):
self.logits_real_ema = init
self.logits_fake_ema = init
self.decay = decay
def update(self, logits_real, logits_fake):
self.logits_real_ema = self.logits_real_ema * self.decay + torch.mean(logits_real).item() * (1- self.decay)
self.logits_fake_ema = self.logits_fake_ema * self.decay + torch.mean(logits_fake).item() * (1 - self.decay)
def lecam_reg(real_pred, fake_pred, lecam_ema):
reg = torch.mean(F.relu(real_pred - lecam_ema.logits_fake_ema).pow(2)) + \
torch.mean(F.relu(lecam_ema.logits_real_ema - fake_pred).pow(2))
return reg
class VQLPIPSWithDiscriminator(nn.Module):
# def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
# disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
# commit_weight = 0.25, codebook_enlarge_ratio=3, codebook_enlarge_steps=2000,
# perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
# disc_ndf=64, disc_loss="hinge", gen_loss_weight=None, lecam_loss_weight=None):
def __init__(self, config: VQConfig):
super().__init__()
assert config.disc_loss in ["hinge", "vanilla", "non_saturate"]
self.codebook_weight = config.codebook_weight
self.pixel_weight = config.pixelloss_weight
self.perceptual_loss = LPIPS().eval()
self.perceptual_weight = config.perceptual_weight
self.commit_weight = config.commit_weight
self.codebook_enlarge_ratio = config.codebook_enlarge_ratio
self.codebook_enlarge_steps = config.codebook_enlarge_steps
self.gen_loss_weight = config.gen_loss_weight
self.lecam_loss_weight = config.lecam_loss_weight
if self.lecam_loss_weight is not None:
self.lecam_ema = LeCAM_EMA()
self.discriminator = NLayerDiscriminator(
input_nc=config.disc_in_channels,
n_layers=config.disc_num_layers,
use_actnorm=config.use_actnorm,
ndf=config.disc_ndf
).apply(weights_init)
self.discriminator_iter_start = config.disc_start
self.disc_loss = {
"hinge": hinge_d_loss,
"vanilla": vanilla_d_loss,
"non_saturate": non_saturate_discriminator_loss,
}[config.disc_loss]
print(f"VQLPIPSWithDiscriminator running with {config.disc_loss} loss.")
self.disc_factor = config.disc_factor
self.discriminator_weight = config.disc_weight
self.disc_conditional = config.disc_conditional
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
if last_layer is not None:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
else:
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
d_weight = d_weight * self.discriminator_weight
return d_weight
def forward(self, codebook_loss, loss_break, inputs, reconstructions, optimizer_idx,
global_step, last_layer=None, cond=None, split="train"):
# now the GAN part
if optimizer_idx == 0:
### This code was previously outside this if statement, but seemed unnecessary? - Kevin
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
nll_loss = rec_loss.clone()
if self.perceptual_weight > 0:
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
nll_loss = nll_loss + self.perceptual_weight * p_loss
else:
p_loss = torch.tensor([0.0])
nll_loss = torch.mean(nll_loss)
###
# generator update
if cond is None:
assert not self.disc_conditional
logits_fake = self.discriminator(reconstructions.contiguous())
else:
assert self.disc_conditional
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
g_loss = non_saturate_gen_loss(logits_fake)
if self.gen_loss_weight is None:
try:
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
except RuntimeError:
assert not self.training
d_weight = torch.tensor(0.0)
else:
d_weight = torch.tensor(self.gen_loss_weight)
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
if not self.training:
real_g_loss = disc_factor * g_loss
g_loss = d_weight * disc_factor * g_loss
scale_codebook_loss = self.codebook_weight * codebook_loss #entropy_loss
if self.codebook_enlarge_ratio > 0:
scale_codebook_loss = self.codebook_enlarge_ratio * (max(0, 1 - global_step / self.codebook_enlarge_steps)) * scale_codebook_loss + scale_codebook_loss
loss = nll_loss + g_loss + scale_codebook_loss + loss_break.commitment * self.commit_weight
if disc_factor == 0:
log = {"{}/total_loss".format(split): loss.clone().detach(),
"{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(),
"{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(),
"{}/commit_loss".format(split): loss_break.commitment.detach(),
"{}/nll_loss".format(split): nll_loss.detach(),
"{}/reconstruct_loss".format(split): rec_loss.detach().mean(),
"{}/perceptual_loss".format(split): p_loss.detach().mean(),
"{}/d_weight".format(split): torch.tensor(0.0),
"{}/disc_factor".format(split): torch.tensor(0.0),
"{}/g_loss".format(split): torch.tensor(0.0),
}
else:
if self.training:
log = {"{}/total_loss".format(split): loss.clone().detach(),
"{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(),
"{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(),
"{}/commit_loss".format(split): loss_break.commitment.detach(),
"{}/entropy_loss".format(split): codebook_loss.detach(),
"{}/nll_loss".format(split): nll_loss.detach(),
"{}/reconstruct_loss".format(split): rec_loss.detach().mean(),
"{}/perceptual_loss".format(split): p_loss.detach().mean(),
"{}/d_weight".format(split): d_weight,
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/g_loss".format(split): g_loss.detach(),
}
else:
# validation only monitor the reconstruct_loss and p_loss
log = {
"{}/reconstruct_loss".format(split): rec_loss.detach().mean(),
"{}/perceptual_loss".format(split): p_loss.detach().mean(),
"{}/g_loss".format(split): real_g_loss.detach(),
}
return loss, log
if optimizer_idx == 1:
# second pass for discriminator update
if cond is None:
logits_real = self.discriminator(inputs.contiguous().detach())
logits_fake = self.discriminator(reconstructions.contiguous().detach())
else:
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
#---------------------------------------------------------------------------------------
# Non-Saturate Loss is the Format of GAN Training, for D Loss, We still adopt Hinge Loss
#---------------------------------------------------------------------------------------
if self.lecam_loss_weight is not None:
self.lecam_ema.update(logits_real, logits_fake)
lecam_loss = lecam_reg(logits_real, logits_fake, self.lecam_ema)
non_saturate_d_loss = self.disc_loss(logits_real, logits_fake)
d_loss = disc_factor * (lecam_loss * self.lecam_loss_weight + non_saturate_d_loss)
else:
non_saturate_d_loss = self.disc_loss(logits_real, logits_fake)
d_loss = disc_factor * non_saturate_d_loss
# d_loss = disc_factor *
if disc_factor == 0:
log = {"{}/disc_loss".format(split): torch.tensor(0.0),
"{}/logits_real".format(split): torch.tensor(0.0),
"{}/logits_fake".format(split): torch.tensor(0.0),
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/lecam_loss".format(split): lecam_loss.detach(),
"{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(),
}
else:
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
"{}/logits_real".format(split): logits_real.detach().mean(),
"{}/logits_fake".format(split): logits_fake.detach().mean(),
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/lecam_loss".format(split): lecam_loss.detach(),
"{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(),
}
return d_loss, log
|