File size: 12,805 Bytes
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
Modified Open-MAGVIT2 code to use VQConfig.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

from magvit2.config import VQConfig
from magvit2.modules.losses.lpips import LPIPS
from magvit2.modules.discriminator.model import NLayerDiscriminator, weights_init


class DummyLoss(nn.Module):
    def __init__(self):
        super().__init__()


def adopt_weight(weight, global_step, threshold=0, value=0.):
    if global_step < threshold:
        weight = value
    return weight


def hinge_d_loss(logits_real, logits_fake):
    loss_real = torch.mean(F.relu(1. - logits_real))
    loss_fake = torch.mean(F.relu(1. + logits_fake))
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss


def vanilla_d_loss(logits_real, logits_fake):
    d_loss = 0.5 * (
        torch.mean(torch.nn.functional.softplus(-logits_real)) +
        torch.mean(torch.nn.functional.softplus(logits_fake)))
    return d_loss


def _sigmoid_cross_entropy_with_logits(labels, logits):
    """
    non-saturating loss 
    """
    zeros = torch.zeros_like(logits, dtype=logits.dtype)
    condition = (logits >= zeros)
    relu_logits = torch.where(condition, logits, zeros)
    neg_abs_logits = torch.where(condition, -logits, logits)
    return relu_logits - logits * labels + torch.log1p(torch.exp(neg_abs_logits))


def non_saturate_gen_loss(logits_fake):
    """
    logits_fake: [B 1 H W]
    """
    B, _, _, _ = logits_fake.shape
    logits_fake = logits_fake.reshape(B, -1)
    logits_fake = torch.mean(logits_fake, dim=-1)
    gen_loss = torch.mean(_sigmoid_cross_entropy_with_logits(
        labels = torch.ones_like(logits_fake), logits=logits_fake
    ))
    
    return gen_loss


def non_saturate_discriminator_loss(logits_real, logits_fake):
    B, _, _, _ = logits_fake.shape
    logits_real = logits_fake.reshape(B, -1)
    logits_fake = logits_fake.reshape(B, -1)
    logits_fake = logits_fake.mean(dim=-1)
    logits_real = logits_real.mean(dim=-1)

    real_loss = _sigmoid_cross_entropy_with_logits(
        labels=torch.ones_like(logits_real), logits=logits_real)

    fake_loss = _sigmoid_cross_entropy_with_logits(
        labels= torch.zeros_like(logits_fake), logits=logits_fake
    )

    discr_loss = real_loss.mean() + fake_loss.mean()
    return discr_loss


class LeCAM_EMA(object):
    def __init__(self, init=0., decay=0.999):
        self.logits_real_ema = init
        self.logits_fake_ema = init
        self.decay = decay
    
    def update(self, logits_real, logits_fake):
        self.logits_real_ema = self.logits_real_ema * self.decay + torch.mean(logits_real).item() * (1- self.decay) 
        self.logits_fake_ema = self.logits_fake_ema * self.decay + torch.mean(logits_fake).item() * (1 - self.decay)


def lecam_reg(real_pred, fake_pred, lecam_ema):
    reg = torch.mean(F.relu(real_pred - lecam_ema.logits_fake_ema).pow(2)) + \
            torch.mean(F.relu(lecam_ema.logits_real_ema - fake_pred).pow(2))
    return reg


class VQLPIPSWithDiscriminator(nn.Module):
    # def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
    #              disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
    #              commit_weight = 0.25, codebook_enlarge_ratio=3, codebook_enlarge_steps=2000,
    #              perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
    #              disc_ndf=64, disc_loss="hinge", gen_loss_weight=None, lecam_loss_weight=None):
    def __init__(self, config: VQConfig):
        super().__init__()
        assert config.disc_loss in ["hinge", "vanilla", "non_saturate"]
        self.codebook_weight = config.codebook_weight
        self.pixel_weight = config.pixelloss_weight
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = config.perceptual_weight
        self.commit_weight = config.commit_weight
        self.codebook_enlarge_ratio = config.codebook_enlarge_ratio
        self.codebook_enlarge_steps = config.codebook_enlarge_steps
        self.gen_loss_weight = config.gen_loss_weight
        self.lecam_loss_weight = config.lecam_loss_weight
        if self.lecam_loss_weight is not None:
            self.lecam_ema = LeCAM_EMA()
        
        self.discriminator = NLayerDiscriminator(
            input_nc=config.disc_in_channels,
            n_layers=config.disc_num_layers,
            use_actnorm=config.use_actnorm,
            ndf=config.disc_ndf
        ).apply(weights_init)

        self.discriminator_iter_start = config.disc_start
        self.disc_loss = {
            "hinge": hinge_d_loss,
            "vanilla": vanilla_d_loss,
            "non_saturate": non_saturate_discriminator_loss,
        }[config.disc_loss]

        print(f"VQLPIPSWithDiscriminator running with {config.disc_loss} loss.")
        self.disc_factor = config.disc_factor
        self.discriminator_weight = config.disc_weight
        self.disc_conditional = config.disc_conditional

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(self, codebook_loss, loss_break, inputs, reconstructions, optimizer_idx,
                global_step, last_layer=None, cond=None, split="train"):

        # now the GAN part
        if optimizer_idx == 0:
            ### This code was previously outside this if statement, but seemed unnecessary? - Kevin
            rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
            nll_loss = rec_loss.clone()
            if self.perceptual_weight > 0:
                p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
                nll_loss = nll_loss + self.perceptual_weight * p_loss
            else:
                p_loss = torch.tensor([0.0])
            nll_loss = torch.mean(nll_loss)
            ###

            # generator update
            if cond is None:
                assert not self.disc_conditional
                logits_fake = self.discriminator(reconstructions.contiguous())
            else:
                assert self.disc_conditional
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))

            g_loss = non_saturate_gen_loss(logits_fake)
            if self.gen_loss_weight is None:
                try:
                    d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
                except RuntimeError:
                    assert not self.training
                    d_weight = torch.tensor(0.0)
            else:
                d_weight = torch.tensor(self.gen_loss_weight)

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)

            if not self.training:
                real_g_loss = disc_factor * g_loss
            g_loss = d_weight * disc_factor * g_loss

            scale_codebook_loss = self.codebook_weight * codebook_loss #entropy_loss
            if self.codebook_enlarge_ratio > 0:
                scale_codebook_loss = self.codebook_enlarge_ratio * (max(0, 1 - global_step / self.codebook_enlarge_steps)) * scale_codebook_loss + scale_codebook_loss

            loss = nll_loss + g_loss + scale_codebook_loss + loss_break.commitment * self.commit_weight
            if disc_factor == 0:
                log = {"{}/total_loss".format(split): loss.clone().detach(),
                       "{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(),
                       "{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(),
                       "{}/commit_loss".format(split): loss_break.commitment.detach(),
                       "{}/nll_loss".format(split): nll_loss.detach(),
                       "{}/reconstruct_loss".format(split): rec_loss.detach().mean(),
                       "{}/perceptual_loss".format(split): p_loss.detach().mean(),
                       "{}/d_weight".format(split): torch.tensor(0.0),
                       "{}/disc_factor".format(split): torch.tensor(0.0),
                       "{}/g_loss".format(split): torch.tensor(0.0),
                       }
            else:
                if self.training:
                    log = {"{}/total_loss".format(split): loss.clone().detach(),
                           "{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(),
                           "{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(),
                           "{}/commit_loss".format(split): loss_break.commitment.detach(),
                           "{}/entropy_loss".format(split): codebook_loss.detach(),
                           "{}/nll_loss".format(split): nll_loss.detach(),
                           "{}/reconstruct_loss".format(split): rec_loss.detach().mean(),
                           "{}/perceptual_loss".format(split): p_loss.detach().mean(),
                           "{}/d_weight".format(split): d_weight,
                           "{}/disc_factor".format(split): torch.tensor(disc_factor),
                           "{}/g_loss".format(split): g_loss.detach(),
                           }
                else:
                    # validation only monitor the reconstruct_loss and p_loss
                    log = {
                        "{}/reconstruct_loss".format(split): rec_loss.detach().mean(),
                        "{}/perceptual_loss".format(split): p_loss.detach().mean(),
                        "{}/g_loss".format(split): real_g_loss.detach(),
                    }
            return loss, log

        if optimizer_idx == 1:
            # second pass for discriminator update
            if cond is None:
                logits_real = self.discriminator(inputs.contiguous().detach())
                logits_fake = self.discriminator(reconstructions.contiguous().detach())
            else:
                logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            #---------------------------------------------------------------------------------------
            # Non-Saturate Loss is the Format of GAN Training, for D Loss, We still adopt Hinge Loss
            #---------------------------------------------------------------------------------------
            if self.lecam_loss_weight is not None:
                self.lecam_ema.update(logits_real, logits_fake)
                lecam_loss = lecam_reg(logits_real, logits_fake, self.lecam_ema)
                non_saturate_d_loss = self.disc_loss(logits_real, logits_fake)
                d_loss = disc_factor * (lecam_loss * self.lecam_loss_weight + non_saturate_d_loss)
            else:
                non_saturate_d_loss = self.disc_loss(logits_real, logits_fake)
                d_loss = disc_factor * non_saturate_d_loss

            # d_loss = disc_factor * 
            if disc_factor == 0:
                log = {"{}/disc_loss".format(split): torch.tensor(0.0),
                       "{}/logits_real".format(split): torch.tensor(0.0),
                       "{}/logits_fake".format(split): torch.tensor(0.0),
                       "{}/disc_factor".format(split): torch.tensor(disc_factor),
                       "{}/lecam_loss".format(split): lecam_loss.detach(),
                       "{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(),
                       }
            else:
                log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
                       "{}/logits_real".format(split): logits_real.detach().mean(),
                       "{}/logits_fake".format(split): logits_fake.detach().mean(),
                       "{}/disc_factor".format(split): torch.tensor(disc_factor),
                       "{}/lecam_loss".format(split): lecam_loss.detach(),
                       "{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(),
                       }
            return d_loss, log