hma / experiments /scripts /model_scaling_ablation /run_40datasets_waction_d64sqrt2.sh
LeroyWaa's picture
draft
246c106
raw
history blame
982 Bytes
#!/bin/bash
set -x
ulimit -c 0
# check if NUM_GPU is unset, if so set it to 8
NUM_GPU=${NUM_GPU:-8}
# SLURM_JOB_NUM_NODES to 1
SLURM_JOB_NUM_NODES=${SLURM_JOB_NUM_NODES:-1}
# MASTER_ADDR to localhost
MASTER_ADDR=${MASTER_ADDR:-localhost}
# MASTER_PORT to 29500
MASTER_PORT=${MASTER_PORT:-29500}
script_name=final2_40dataset_waction_d64sqrt2_gpu_${NUM_GPU}_nodes_${SLURM_JOB_NUM_NODES}
torchrun --nnodes=${SLURM_JOB_NUM_NODES} --nproc_per_node=${NUM_GPU} \
--rdzv-id=${SLURM_JOB_ID} --rdzv-backend=c10d --rdzv-endpoint=${MASTER_ADDR}:${MASTER_PORT} \
train_multi.py --genie_config genie/configs/magvit_n32_h8_d64sqrt2_action_concat.json \
--output_dir data/$script_name \
--max_eval_steps 10 \
--num_episodes_per_dataset 1000000 \
--per_device_train_batch_size 8 \
--run_name $script_name \
--resume_from_checkpoint data/$script_name/ \
--max_train_steps 68536 --save_second_epoch \
--train_split experiments/datasplit/dataset40.yaml