Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Modified Open-MAGVIT2 code to use VQConfig. | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from magvit2.config import VQConfig | |
from magvit2.modules.losses.lpips import LPIPS | |
from magvit2.modules.discriminator.model import NLayerDiscriminator, weights_init | |
class DummyLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def adopt_weight(weight, global_step, threshold=0, value=0.): | |
if global_step < threshold: | |
weight = value | |
return weight | |
def hinge_d_loss(logits_real, logits_fake): | |
loss_real = torch.mean(F.relu(1. - logits_real)) | |
loss_fake = torch.mean(F.relu(1. + logits_fake)) | |
d_loss = 0.5 * (loss_real + loss_fake) | |
return d_loss | |
def vanilla_d_loss(logits_real, logits_fake): | |
d_loss = 0.5 * ( | |
torch.mean(torch.nn.functional.softplus(-logits_real)) + | |
torch.mean(torch.nn.functional.softplus(logits_fake))) | |
return d_loss | |
def _sigmoid_cross_entropy_with_logits(labels, logits): | |
""" | |
non-saturating loss | |
""" | |
zeros = torch.zeros_like(logits, dtype=logits.dtype) | |
condition = (logits >= zeros) | |
relu_logits = torch.where(condition, logits, zeros) | |
neg_abs_logits = torch.where(condition, -logits, logits) | |
return relu_logits - logits * labels + torch.log1p(torch.exp(neg_abs_logits)) | |
def non_saturate_gen_loss(logits_fake): | |
""" | |
logits_fake: [B 1 H W] | |
""" | |
B, _, _, _ = logits_fake.shape | |
logits_fake = logits_fake.reshape(B, -1) | |
logits_fake = torch.mean(logits_fake, dim=-1) | |
gen_loss = torch.mean(_sigmoid_cross_entropy_with_logits( | |
labels = torch.ones_like(logits_fake), logits=logits_fake | |
)) | |
return gen_loss | |
def non_saturate_discriminator_loss(logits_real, logits_fake): | |
B, _, _, _ = logits_fake.shape | |
logits_real = logits_fake.reshape(B, -1) | |
logits_fake = logits_fake.reshape(B, -1) | |
logits_fake = logits_fake.mean(dim=-1) | |
logits_real = logits_real.mean(dim=-1) | |
real_loss = _sigmoid_cross_entropy_with_logits( | |
labels=torch.ones_like(logits_real), logits=logits_real) | |
fake_loss = _sigmoid_cross_entropy_with_logits( | |
labels= torch.zeros_like(logits_fake), logits=logits_fake | |
) | |
discr_loss = real_loss.mean() + fake_loss.mean() | |
return discr_loss | |
class LeCAM_EMA(object): | |
def __init__(self, init=0., decay=0.999): | |
self.logits_real_ema = init | |
self.logits_fake_ema = init | |
self.decay = decay | |
def update(self, logits_real, logits_fake): | |
self.logits_real_ema = self.logits_real_ema * self.decay + torch.mean(logits_real).item() * (1- self.decay) | |
self.logits_fake_ema = self.logits_fake_ema * self.decay + torch.mean(logits_fake).item() * (1 - self.decay) | |
def lecam_reg(real_pred, fake_pred, lecam_ema): | |
reg = torch.mean(F.relu(real_pred - lecam_ema.logits_fake_ema).pow(2)) + \ | |
torch.mean(F.relu(lecam_ema.logits_real_ema - fake_pred).pow(2)) | |
return reg | |
class VQLPIPSWithDiscriminator(nn.Module): | |
# def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, | |
# disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, | |
# commit_weight = 0.25, codebook_enlarge_ratio=3, codebook_enlarge_steps=2000, | |
# perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, | |
# disc_ndf=64, disc_loss="hinge", gen_loss_weight=None, lecam_loss_weight=None): | |
def __init__(self, config: VQConfig): | |
super().__init__() | |
assert config.disc_loss in ["hinge", "vanilla", "non_saturate"] | |
self.codebook_weight = config.codebook_weight | |
self.pixel_weight = config.pixelloss_weight | |
self.perceptual_loss = LPIPS().eval() | |
self.perceptual_weight = config.perceptual_weight | |
self.commit_weight = config.commit_weight | |
self.codebook_enlarge_ratio = config.codebook_enlarge_ratio | |
self.codebook_enlarge_steps = config.codebook_enlarge_steps | |
self.gen_loss_weight = config.gen_loss_weight | |
self.lecam_loss_weight = config.lecam_loss_weight | |
if self.lecam_loss_weight is not None: | |
self.lecam_ema = LeCAM_EMA() | |
self.discriminator = NLayerDiscriminator( | |
input_nc=config.disc_in_channels, | |
n_layers=config.disc_num_layers, | |
use_actnorm=config.use_actnorm, | |
ndf=config.disc_ndf | |
).apply(weights_init) | |
self.discriminator_iter_start = config.disc_start | |
self.disc_loss = { | |
"hinge": hinge_d_loss, | |
"vanilla": vanilla_d_loss, | |
"non_saturate": non_saturate_discriminator_loss, | |
}[config.disc_loss] | |
print(f"VQLPIPSWithDiscriminator running with {config.disc_loss} loss.") | |
self.disc_factor = config.disc_factor | |
self.discriminator_weight = config.disc_weight | |
self.disc_conditional = config.disc_conditional | |
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
if last_layer is not None: | |
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
else: | |
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] | |
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() | |
d_weight = d_weight * self.discriminator_weight | |
return d_weight | |
def forward(self, codebook_loss, loss_break, inputs, reconstructions, optimizer_idx, | |
global_step, last_layer=None, cond=None, split="train"): | |
# now the GAN part | |
if optimizer_idx == 0: | |
### This code was previously outside this if statement, but seemed unnecessary? - Kevin | |
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) | |
nll_loss = rec_loss.clone() | |
if self.perceptual_weight > 0: | |
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) | |
nll_loss = nll_loss + self.perceptual_weight * p_loss | |
else: | |
p_loss = torch.tensor([0.0]) | |
nll_loss = torch.mean(nll_loss) | |
### | |
# generator update | |
if cond is None: | |
assert not self.disc_conditional | |
logits_fake = self.discriminator(reconstructions.contiguous()) | |
else: | |
assert self.disc_conditional | |
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) | |
g_loss = non_saturate_gen_loss(logits_fake) | |
if self.gen_loss_weight is None: | |
try: | |
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) | |
except RuntimeError: | |
assert not self.training | |
d_weight = torch.tensor(0.0) | |
else: | |
d_weight = torch.tensor(self.gen_loss_weight) | |
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) | |
if not self.training: | |
real_g_loss = disc_factor * g_loss | |
g_loss = d_weight * disc_factor * g_loss | |
scale_codebook_loss = self.codebook_weight * codebook_loss #entropy_loss | |
if self.codebook_enlarge_ratio > 0: | |
scale_codebook_loss = self.codebook_enlarge_ratio * (max(0, 1 - global_step / self.codebook_enlarge_steps)) * scale_codebook_loss + scale_codebook_loss | |
loss = nll_loss + g_loss + scale_codebook_loss + loss_break.commitment * self.commit_weight | |
if disc_factor == 0: | |
log = {"{}/total_loss".format(split): loss.clone().detach(), | |
"{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(), | |
"{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(), | |
"{}/commit_loss".format(split): loss_break.commitment.detach(), | |
"{}/nll_loss".format(split): nll_loss.detach(), | |
"{}/reconstruct_loss".format(split): rec_loss.detach().mean(), | |
"{}/perceptual_loss".format(split): p_loss.detach().mean(), | |
"{}/d_weight".format(split): torch.tensor(0.0), | |
"{}/disc_factor".format(split): torch.tensor(0.0), | |
"{}/g_loss".format(split): torch.tensor(0.0), | |
} | |
else: | |
if self.training: | |
log = {"{}/total_loss".format(split): loss.clone().detach(), | |
"{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(), | |
"{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(), | |
"{}/commit_loss".format(split): loss_break.commitment.detach(), | |
"{}/entropy_loss".format(split): codebook_loss.detach(), | |
"{}/nll_loss".format(split): nll_loss.detach(), | |
"{}/reconstruct_loss".format(split): rec_loss.detach().mean(), | |
"{}/perceptual_loss".format(split): p_loss.detach().mean(), | |
"{}/d_weight".format(split): d_weight, | |
"{}/disc_factor".format(split): torch.tensor(disc_factor), | |
"{}/g_loss".format(split): g_loss.detach(), | |
} | |
else: | |
# validation only monitor the reconstruct_loss and p_loss | |
log = { | |
"{}/reconstruct_loss".format(split): rec_loss.detach().mean(), | |
"{}/perceptual_loss".format(split): p_loss.detach().mean(), | |
"{}/g_loss".format(split): real_g_loss.detach(), | |
} | |
return loss, log | |
if optimizer_idx == 1: | |
# second pass for discriminator update | |
if cond is None: | |
logits_real = self.discriminator(inputs.contiguous().detach()) | |
logits_fake = self.discriminator(reconstructions.contiguous().detach()) | |
else: | |
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) | |
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) | |
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) | |
#--------------------------------------------------------------------------------------- | |
# Non-Saturate Loss is the Format of GAN Training, for D Loss, We still adopt Hinge Loss | |
#--------------------------------------------------------------------------------------- | |
if self.lecam_loss_weight is not None: | |
self.lecam_ema.update(logits_real, logits_fake) | |
lecam_loss = lecam_reg(logits_real, logits_fake, self.lecam_ema) | |
non_saturate_d_loss = self.disc_loss(logits_real, logits_fake) | |
d_loss = disc_factor * (lecam_loss * self.lecam_loss_weight + non_saturate_d_loss) | |
else: | |
non_saturate_d_loss = self.disc_loss(logits_real, logits_fake) | |
d_loss = disc_factor * non_saturate_d_loss | |
# d_loss = disc_factor * | |
if disc_factor == 0: | |
log = {"{}/disc_loss".format(split): torch.tensor(0.0), | |
"{}/logits_real".format(split): torch.tensor(0.0), | |
"{}/logits_fake".format(split): torch.tensor(0.0), | |
"{}/disc_factor".format(split): torch.tensor(disc_factor), | |
"{}/lecam_loss".format(split): lecam_loss.detach(), | |
"{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(), | |
} | |
else: | |
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), | |
"{}/logits_real".format(split): logits_real.detach().mean(), | |
"{}/logits_fake".format(split): logits_fake.detach().mean(), | |
"{}/disc_factor".format(split): torch.tensor(disc_factor), | |
"{}/lecam_loss".format(split): lecam_loss.detach(), | |
"{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(), | |
} | |
return d_loss, log | |