Spaces:
Running
on
Zero
Running
on
Zero
import time | |
from sim.policy import DiffusionPolicy | |
from sim.robomimic.robomimic_runner import RolloutRunner | |
NUM_EVAL_TRIALS = 10 | |
if __name__ == '__main__': | |
success_rates = [0.38, 0.52, 0.70, 1.00] | |
eval_time_taken = [0.0] * len(success_rates) | |
env_runner = RolloutRunner( | |
env_names=['lift'], | |
episode_num=NUM_EVAL_TRIALS, | |
save_video=False | |
) | |
for index, sr in enumerate(success_rates): | |
print(f"Running evaluation for model with success rate: {sr:.2f}") | |
diffusion_policy = DiffusionPolicy(f'data/dp_ckpt/dp_lift_sr{sr:.2f}.ckpt') | |
n_obs_steps = diffusion_policy.n_obs_steps | |
start_time = time.time() | |
success, reward = env_runner.run( | |
policy=diffusion_policy, | |
env_name=['lift'], | |
) | |
end_time = time.time() | |
eval_time_taken[index] = (end_time - start_time) / NUM_EVAL_TRIALS | |
print(f"Time taken for evaluation: {eval_time_taken[index]}") | |
print(f"success: {success}, reward: {reward}") | |