Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import json | |
import cv2 | |
from sim.main import InteractiveDigitalWorld | |
from sim.simulator import GenieSimulator, ReplaySimulator | |
from sim.policy import ReplayPolicy | |
# NOTE: ad hoc | |
def normalize_frames(frames): | |
new_frames = [] | |
for frame in frames: | |
H, W = frame.shape[:2] | |
if H < W: | |
Hnew, Wnew = 256, int(W * 256 / H) | |
else: | |
Hnew, Wnew = int(H * 256 / W), 256 | |
frame = cv2.resize(frame, (Wnew, Hnew)) | |
H, W = frame.shape[:2] | |
Hstart = (H - 256) // 2 | |
Wstart = (W - 256) // 2 | |
frame = frame[Hstart:Hstart+256, Wstart:Wstart+256] | |
new_frames.append(frame) | |
return np.stack(new_frames, axis=0) | |
if __name__ == '__main__': | |
prompt_horizon = 11 | |
action_stride = 1 | |
dataset_dir = "data/langtable_raw_train" | |
metadata = json.load(open(f"{dataset_dir}/metadata.json")) | |
h, w = metadata['h'], metadata['w'] | |
action_dim = metadata['action_dim'] | |
num_images = metadata['num_images'] | |
actions = np.fromfile(f"{dataset_dir}/actions/actions.bin", dtype=np.float32).reshape(num_images, action_dim) | |
frames = np.fromfile(f"{dataset_dir}/video.bin", dtype=np.uint8).reshape(num_images, h, w, 3) | |
# frames = normalize_frames(frames) | |
segment_ids = np.fromfile(f"{dataset_dir}/segment_ids.bin", dtype=np.int32) | |
print(f"{actions.shape=}, {frames.shape=}, {segment_ids.shape=}") | |
# get chunks' start and end | |
chunks = [] # [start_index, end_index) | |
start_index = 0 | |
end_index = 0 | |
while end_index < len(segment_ids): | |
while end_index < len(segment_ids) and segment_ids[end_index] == segment_ids[start_index]: | |
end_index += 1 | |
if end_index - start_index > prompt_horizon * 2: | |
chunks.append((start_index, end_index)) | |
start_index = end_index | |
print(f"there're {len(chunks)} chunks") | |
for eps_idx, chunk in enumerate(chunks): | |
start_idx, end_idx = chunk | |
this_frames = frames[start_idx:end_idx] | |
this_actions = actions[start_idx:end_idx] | |
print(f"processing chunk {eps_idx} with {len(this_frames)} frames") | |
replay_simulator = ReplaySimulator(frames=this_frames, prompt_horizon=prompt_horizon) | |
replay_policy = ReplayPolicy(actions=this_actions, prompt_horizon=prompt_horizon, action_stride=action_stride) | |
assert len(replay_policy) == len(replay_simulator) | |
genie_simulator = GenieSimulator( | |
image_encoder_type='temporalvae', | |
image_encoder_ckpt='stabilityai/stable-video-diffusion-img2vid', | |
quantize=False, | |
backbone_type="stmar", | |
backbone_ckpt="data/mar_ckpt/langtable", | |
prompt_horizon=prompt_horizon, | |
action_stride=action_stride, | |
domain='language_table', | |
physics_simulator=replay_simulator, | |
compute_psnr=False, | |
compute_delta_psnr=False, | |
allow_external_prompt=True | |
) | |
# use whatever current state is as the initial state | |
image_prompt = replay_simulator.prompt() | |
action_prompt = replay_policy.prompt() | |
genie_simulator.set_initial_state((image_prompt, action_prompt)) | |
playground = InteractiveDigitalWorld( | |
simulator=genie_simulator, | |
policy=replay_policy, | |
offscreen=True, | |
window_size=(512 * 2, 512) # [genie image | GT image] side-by-side | |
) | |
for _ in range(len(replay_policy)): | |
playground.step() | |
save_video_path = f'data/langtable_train_videos/{eps_idx}.mp4' | |
print(f"Saving video to {save_video_path}") | |
playground.save_video(save_path=save_video_path, as_gif=False) | |
playground.close() |