Spaces:
Running
on
Zero
Running
on
Zero
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs | |
The FID metric calculates the distance between two distributions of images. | |
Typically, we have summary statistics (mean & covariance matrix) of one | |
of these distributions, while the 2nd distribution is given by a GAN. | |
When run as a stand-alone program, it compares the distribution of | |
images that are stored as PNG/JPEG at a specified location with a | |
distribution given by summary statistics (in pickle format). | |
The FID is calculated by assuming that X_1 and X_2 are the activations of | |
the pool_3 layer of the inception net for generated samples and real world | |
samples respectively. | |
See --help to see further details. | |
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead | |
of Tensorflow | |
Copyright 2018 Institute of Bioinformatics, JKU Linz | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
# code adapted from https://github.com/mseitzer/pytorch-fid/tree/master | |
import os | |
import pathlib | |
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser | |
import numpy as np | |
import torch | |
import torchvision.transforms as TF | |
from PIL import Image | |
from scipy import linalg | |
from torch.nn.functional import adaptive_avg_pool2d | |
try: | |
from tqdm import tqdm | |
except ImportError: | |
# If tqdm is not available, provide a mock version of it | |
def tqdm(x): | |
return x | |
from .inception import InceptionV3 | |
IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"} | |
class ImagePathDataset(torch.utils.data.Dataset): | |
def __init__(self, files, transforms=None): | |
self.files = files | |
self.transforms = transforms | |
def __len__(self): | |
return len(self.files) | |
def __getitem__(self, i): | |
path = self.files[i] | |
img = Image.open(path).convert("RGB") | |
if self.transforms is not None: | |
img = self.transforms(img) | |
return img | |
def get_activations( | |
files, model, batch_size=50, dims=2048, device="cpu", num_workers=1 | |
): | |
"""Calculates the activations of the pool_3 layer for all images. | |
Params: | |
-- files : List of image files paths | |
-- model : Instance of inception model | |
-- batch_size : Batch size of images for the model to process at once. | |
Make sure that the number of samples is a multiple of | |
the batch size, otherwise some samples are ignored. This | |
behavior is retained to match the original FID score | |
implementation. | |
-- dims : Dimensionality of features returned by Inception | |
-- device : Device to run calculations | |
-- num_workers : Number of parallel dataloader workers | |
Returns: | |
-- A numpy array of dimension (num images, dims) that contains the | |
activations of the given tensor when feeding inception with the | |
query tensor. | |
""" | |
model.eval() | |
if batch_size > len(files): | |
print( | |
( | |
"Warning: batch size is bigger than the data size. " | |
"Setting batch size to data size" | |
) | |
) | |
batch_size = len(files) | |
dataset = ImagePathDataset(files, transforms=TF.ToTensor()) | |
dataloader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
shuffle=False, | |
drop_last=False, | |
num_workers=num_workers, | |
) | |
pred_arr = np.empty((len(files), dims)) | |
start_idx = 0 | |
for batch in tqdm(dataloader): | |
batch = batch.to(device) | |
with torch.no_grad(): | |
pred = model(batch)[0] | |
# If model output is not scalar, apply global spatial average pooling. | |
# This happens if you choose a dimensionality not equal 2048. | |
if pred.size(2) != 1 or pred.size(3) != 1: | |
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
pred = pred.squeeze(3).squeeze(2).cpu().numpy() | |
pred_arr[start_idx : start_idx + pred.shape[0]] = pred | |
start_idx = start_idx + pred.shape[0] | |
return pred_arr | |
def get_activations_images( | |
dataset, model, batch_size=50, dims=2048, device="cpu", num_workers=0 | |
): | |
"""Calculates the activations of the pool_3 layer for all images. | |
Params: | |
-- files : List of image files paths | |
-- model : Instance of inception model | |
-- batch_size : Batch size of images for the model to process at once. | |
Make sure that the number of samples is a multiple of | |
the batch size, otherwise some samples are ignored. This | |
behavior is retained to match the original FID score | |
implementation. | |
-- dims : Dimensionality of features returned by Inception | |
-- device : Device to run calculations | |
-- num_workers : Number of parallel dataloader workers | |
Returns: | |
-- A numpy array of dimension (num images, dims) that contains the | |
activations of the given tensor when feeding inception with the | |
query tensor. | |
""" | |
model.eval() | |
# import IPython; IPython.embed() | |
# combine batch and temporal | |
dataset = torch.cat([dataset[:, i] for i in range(dataset.shape[1])], dim=0).to("cpu") | |
dataloader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
shuffle=False, | |
drop_last=True, | |
num_workers=num_workers, | |
) | |
pred_arr = np.empty((len(dataset), dims)) | |
start_idx = 0 | |
for batch in tqdm(dataloader): | |
batch = batch.to(device) | |
with torch.no_grad(): | |
pred = model(batch)[0] | |
# If model output is not scalar, apply global spatial average pooling. | |
# This happens if you choose a dimensionality not equal 2048. | |
if pred.size(2) != 1 or pred.size(3) != 1: | |
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
pred = pred.squeeze(3).squeeze(2).cpu().numpy() | |
pred_arr[start_idx : start_idx + pred.shape[0]] = pred | |
start_idx = start_idx + pred.shape[0] | |
return pred_arr | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Stable version by Dougal J. Sutherland. | |
Params: | |
-- mu1 : Numpy array containing the activations of a layer of the | |
inception net (like returned by the function 'get_predictions') | |
for generated samples. | |
-- mu2 : The sample mean over activations, precalculated on an | |
representative data set. | |
-- sigma1: The covariance matrix over activations for generated samples. | |
-- sigma2: The covariance matrix over activations, precalculated on an | |
representative data set. | |
Returns: | |
-- : The Frechet Distance. | |
""" | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert ( | |
mu1.shape == mu2.shape | |
), "Training and test mean vectors have different lengths" | |
assert ( | |
sigma1.shape == sigma2.shape | |
), "Training and test covariances have different dimensions" | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ( | |
"fid calculation produces singular product; " | |
"adding %s to diagonal of cov estimates" | |
) % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError("Imaginary component {}".format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean | |
def calculate_activation_statistics( | |
images, model, batch_size=50, dims=2048, device="cpu", num_workers=1 | |
): | |
"""Calculation of the statistics used by the FID. | |
Params: | |
-- files : List of image files paths | |
-- model : Instance of inception model | |
-- batch_size : The images numpy array is split into batches with | |
batch size batch_size. A reasonable batch size | |
depends on the hardware. | |
-- dims : Dimensionality of features returned by Inception | |
-- device : Device to run calculations | |
-- num_workers : Number of parallel dataloader workers | |
Returns: | |
-- mu : The mean over samples of the activations of the pool_3 layer of | |
the inception model. | |
-- sigma : The covariance matrix of the activations of the pool_3 layer of | |
the inception model. | |
""" | |
act = get_activations_images(images, model, batch_size, dims, device, num_workers) | |
mu = np.mean(act, axis=0) | |
sigma = np.cov(act, rowvar=False) | |
return mu, sigma | |
def compute_statistics(images, model, batch_size, dims, device, num_workers=1): | |
m, s = calculate_activation_statistics( | |
images, model, batch_size, dims, device, num_workers | |
) | |
return m, s | |
def calculate_fid(pred_images, gt_images, batch_size=16, device="cuda", dims=2048, num_workers=1): | |
"""Calculates the FID of two paths""" | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
model = InceptionV3([block_idx]).to(device) | |
m1, s1 = compute_statistics( | |
pred_images, model, batch_size, dims, device, num_workers | |
) | |
m2, s2 = compute_statistics( | |
gt_images, model, batch_size, dims, device, num_workers | |
) | |
fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
return fid_value | |
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1): | |
"""Calculates the FID of two paths""" | |
for p in paths: | |
if not os.path.exists(p): | |
raise RuntimeError("Invalid path: %s" % p) | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
model = InceptionV3([block_idx]).to(device) | |
m1, s1 = compute_statistics_of_path( | |
paths[0], model, batch_size, dims, device, num_workers | |
) | |
m2, s2 = compute_statistics_of_path( | |
paths[1], model, batch_size, dims, device, num_workers | |
) | |
fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
return fid_value | |
def save_fid_stats(paths, batch_size, device, dims, num_workers=1): | |
"""Saves FID statistics of one path""" | |
if not os.path.exists(paths[0]): | |
raise RuntimeError("Invalid path: %s" % paths[0]) | |
if os.path.exists(paths[1]): | |
raise RuntimeError("Existing output file: %s" % paths[1]) | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
model = InceptionV3([block_idx]).to(device) | |
print(f"Saving statistics for {paths[0]}") | |
m1, s1 = compute_statistics_of_path( | |
paths[0], model, batch_size, dims, device, num_workers | |
) | |
np.savez_compressed(paths[1], mu=m1, sigma=s1) | |
def main(): | |
args = parser.parse_args() | |
if args.device is None: | |
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") | |
else: | |
device = torch.device(args.device) | |
if args.num_workers is None: | |
try: | |
num_cpus = len(os.sched_getaffinity(0)) | |
except AttributeError: | |
# os.sched_getaffinity is not available under Windows, use | |
# os.cpu_count instead (which may not return the *available* number | |
# of CPUs). | |
num_cpus = os.cpu_count() | |
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 | |
else: | |
num_workers = args.num_workers | |
if args.save_stats: | |
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers) | |
return | |
fid_value = calculate_fid_given_paths( | |
args.path, args.batch_size, device, args.dims, num_workers | |
) | |
print("FID: ", fid_value) | |
if __name__ == "__main__": | |
main() | |