LeroyWaa's picture
draft
246c106
raw
history blame
5.37 kB
import torch
import os
import math
import torch.nn.functional as F
import numpy as np
import einops
def load_i3d_pretrained(device=torch.device('cpu')):
i3D_WEIGHTS_URL = "https://onedrive.live.com/download?cid=78EEF3EB6AE7DBCB&resid=78EEF3EB6AE7DBCB%21199&authkey=AApKdFHPXzWLNyI"
filepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'i3d_pretrained_400.pt')
print(filepath)
if not os.path.exists(filepath):
print(f"preparing for download {i3D_WEIGHTS_URL}, you can download it by yourself.")
os.system(f"wget {i3D_WEIGHTS_URL} -O {filepath}")
from .pytorch_i3d import InceptionI3d
i3d = InceptionI3d(400, in_channels=3).eval().to(device)
i3d.load_state_dict(torch.load(filepath, map_location=device))
i3d = torch.nn.DataParallel(i3d)
return i3d
def preprocess_single(video, resolution, sequence_length=None):
# video: THWC, {0, ..., 255}
video = video.permute(0, 3, 1, 2).float() / 255. # TCHW
t, c, h, w = video.shape
# temporal crop
if sequence_length is not None:
assert sequence_length <= t
video = video[:sequence_length]
# scale shorter side to resolution
scale = resolution / min(h, w)
if h < w:
target_size = (resolution, math.ceil(w * scale))
else:
target_size = (math.ceil(h * scale), resolution)
video = F.interpolate(video, size=target_size, mode='bilinear',
align_corners=False)
# center crop
t, c, h, w = video.shape
w_start = (w - resolution) // 2
h_start = (h - resolution) // 2
video = video[:, :, h_start:h_start + resolution, w_start:w_start + resolution]
video = video.permute(1, 0, 2, 3).contiguous() # CTHW
video -= 0.5
return video
def preprocess(videos, target_resolution=224):
# we should tras videos in [0-1] [b c t h w] as th.float
# -> videos in {0, ..., 255} [b t h w c] as np.uint8 array
videos = einops.rearrange(videos, 'b c t h w -> b t h w c')
videos = (videos*255).numpy().astype(np.uint8)
b, t, h, w, c = videos.shape
videos = torch.from_numpy(videos)
videos = torch.stack([preprocess_single(video, target_resolution) for video in videos])
return videos * 2 # [-0.5, 0.5] -> [-1, 1]
def get_fvd_logits(videos, i3d, device, bs=10):
videos = preprocess(videos)
embeddings = get_logits(i3d, videos, device, bs=10)
return embeddings
# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L161
def _symmetric_matrix_square_root(mat, eps=1e-10):
u, s, v = torch.svd(mat)
si = torch.where(s < eps, s, torch.sqrt(s))
return torch.matmul(torch.matmul(u, torch.diag(si)), v.t())
# https://github.com/tensorflow/gan/blob/de4b8da3853058ea380a6152bd3bd454013bf619/tensorflow_gan/python/eval/classifier_metrics.py#L400
def trace_sqrt_product(sigma, sigma_v):
sqrt_sigma = _symmetric_matrix_square_root(sigma)
sqrt_a_sigmav_a = torch.matmul(sqrt_sigma, torch.matmul(sigma_v, sqrt_sigma))
return torch.trace(_symmetric_matrix_square_root(sqrt_a_sigmav_a))
# https://discuss.pytorch.org/t/covariance-and-gradient-support/16217/2
def cov(m, rowvar=False):
'''Estimate a covariance matrix given data.
Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`,
then the covariance matrix element `C_{ij}` is the covariance of
`x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`.
Args:
m: A 1-D or 2-D array containing multiple variables and observations.
Each row of `m` represents a variable, and each column a single
observation of all those variables.
rowvar: If `rowvar` is True, then each row represents a
variable, with observations in the columns. Otherwise, the
relationship is transposed: each column represents a variable,
while the rows contain observations.
Returns:
The covariance matrix of the variables.
'''
if m.dim() > 2:
raise ValueError('m has more than 2 dimensions')
if m.dim() < 2:
m = m.view(1, -1)
if not rowvar and m.size(0) != 1:
m = m.t()
fact = 1.0 / (m.size(1) - 1) # unbiased estimate
m -= torch.mean(m, dim=1, keepdim=True)
mt = m.t() # if complex: mt = m.t().conj()
return fact * m.matmul(mt).squeeze()
def frechet_distance(x1, x2):
x1 = x1.flatten(start_dim=1)
x2 = x2.flatten(start_dim=1)
m, m_w = x1.mean(dim=0), x2.mean(dim=0)
sigma, sigma_w = cov(x1, rowvar=False), cov(x2, rowvar=False)
mean = torch.sum((m - m_w) ** 2)
if x1.shape[0]>1:
sqrt_trace_component = trace_sqrt_product(sigma, sigma_w)
trace = torch.trace(sigma + sigma_w) - 2.0 * sqrt_trace_component
fd = trace + mean
else:
fd = np.real(mean)
return float(fd)
def get_logits(i3d, videos, device, bs=10):
# assert videos.shape[0] % 16 == 0
with torch.no_grad():
logits = []
for i in range(0, videos.shape[0], bs):
batch = videos[i:i + bs].to(device)
# logits.append(i3d.module.extract_features(batch)) # wrong
logits.append(i3d(batch)) # right
logits = torch.cat(logits, dim=0)
return logits