Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
class FactorizedEmbedding(nn.Module): | |
""" | |
Each token's embedding is the sum of the embeddings in each factorized vocabulary. | |
Equivalent to nn.Embedding when `num_factored_vocabs` = 1. | |
""" | |
def __init__(self, factored_vocab_size: int, num_factored_vocabs: int, d_model: int, mask_token_id: int): | |
""" | |
Args: | |
config: Should specify `factored_vocab_size`, `d_model`, `num_factored_vocabs`, `image_vocab_size`. | |
E.g. genie.config.GenieConfig | |
""" | |
super().__init__() | |
self.factored_vocab_size = factored_vocab_size | |
self.num_factored_vocabs = num_factored_vocabs | |
self.d_model = d_model | |
self.mask_token_id = mask_token_id | |
self.factored_embeds = nn.ParameterList([nn.Embedding(factored_vocab_size, d_model) | |
for _ in range(num_factored_vocabs)]) | |
self.mask_token_embed = nn.Parameter(torch.zeros(1, d_model)) | |
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: | |
""" | |
Args: | |
input_ids: Shape (B, T, H*W) | |
Returns: | |
input embeddings: Shape (B, T, H*W, d_model) | |
""" | |
# initialize all embeddings to the mask token embedding, and then fill in actual token embeddings | |
embeds = self.mask_token_embed.repeat(input_ids.size() + (1,)) | |
is_not_mask = input_ids != self.mask_token_id | |
factored_token_ids = factorize_token_ids( | |
input_ids[is_not_mask], self.num_factored_vocabs, self.factored_vocab_size | |
) | |
unmasked_embeds = [ | |
factored_embed(factored_token_ids) | |
for factored_embed, factored_token_ids in zip(self.factored_embeds, factored_token_ids.unbind(-1)) | |
] | |
embeds[is_not_mask] = torch.sum(torch.stack(unmasked_embeds), dim=0) | |
return embeds | |
def factorize_token_ids( | |
token_ids: torch.LongTensor, | |
num_factored_vocabs: int = 2, | |
factored_vocab_size: int = 512 | |
) -> torch.LongTensor: | |
""" | |
`token_ids`: any size tensor with token id values in [0, image_vocab_size = 2**18). | |
Returns: | |
Size token_ids.size() + (num_factored_vocabs,), where the last dimension has token ids in | |
each individual vocabulary, with values in [0, factored_vocab_size = 512) | |
""" | |
powers = factored_vocab_size ** torch.arange(num_factored_vocabs, device=token_ids.device) | |
return (token_ids.unsqueeze(-1) // powers) % factored_vocab_size | |
def unfactorize_token_ids( | |
factored_token_ids: torch.LongTensor, | |
num_factored_vocabs: int = 2, | |
factored_vocab_size: int = 512 | |
) -> torch.LongTensor: | |
""" | |
Inverse of `factorize_token_ids`. | |
It is assumed that the last dimension of `factored_token_ids` is the vocabulary dimension. | |
Returns: | |
Size token_ids.size()[:-1], with values in [0, image_vocab_size = 2**18) | |
""" | |
powers = factored_vocab_size ** torch.arange(num_factored_vocabs, device=factored_token_ids.device) | |
return (factored_token_ids * powers).sum(dim=-1) | |
def factorize_labels( | |
labels_THW: torch.LongTensor, | |
num_factored_vocabs: int = 2, | |
factored_vocab_size: int = 512 | |
) -> torch.LongTensor: | |
""" | |
Simply `factorize_token_ids` followed by permuting dimensions. | |
labels_THW: shape (B, T, H, W), values in [0, image_vocab_size=2**18) | |
Returns: | |
factored_labels: shape (B, num_factored_vocabs=2, T, H, W), values in [0, factored_vocab_size=512) | |
""" | |
factored_labels = factorize_token_ids(labels_THW, num_factored_vocabs, factored_vocab_size) | |
return rearrange(factored_labels, "b t h w num_factored_vocabs -> b num_factored_vocabs t h w") | |
def nth_root(x, n): | |
root = round(x ** (1 / n)) | |
assert root ** n == x, (x, n, root) | |
return root | |