hma / experiments /scripts /eval_action_scripts /run_evaluation_multidataset_batch.sh
LeroyWaa's picture
draft
246c106
raw
history blame
1.23 kB
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --exclusive
#SBATCH --time=3-0
#SBATCH --partition=learnfair
#SBATCH --error=logs/std-%j.err
#SBATCH --output=logs/std-%j.out
#SBATCH --gpus-per-node=8
#SBATCH --cpus-per-task=32
#SBATCH --exclude=learnfair[021,025,045,081,082,089,097,098,101,102,103,105]
set -x
ulimit -c 0
script_name=${1}
dataset_file=${2}
WANDB_KEY=4c1540ebf8cb9964703ac212a937c00848a79b67
wandb login ${WANDB_KEY}
# assume dataset names are split with , do a for loop
#!/bin/bash
echo "--------------------------------------------------" >> ~/history.txt
echo "Slurm job id | job id | command | model | dataset" >> ~/history.txt
echo "$SLURM_JOB_ID | $JOB_ID | evaluation | $script_name | $dataset" >> ~/history.txt
datasets=$(python -c "import yaml; print(','.join(yaml.safe_load(open('experiments/datasplit/$dataset_file.yaml'))['domains'].split(',')))")
IFS=',' read -ra dataset_array <<< "$datasets"
# Iterate over the datasets and run the evaluation script for each one
for dataset in "${dataset_array[@]}"; do
dataset=$(echo "$dataset" | xargs)
bash experiments/scripts/eval_action_scripts/run_evaluation_waction_valset_cluster2_raw_accel.sh $script_name $dataset
done