Spaces:
Running
on
Zero
Running
on
Zero
#SBATCH --nodes=1 | |
#SBATCH --ntasks-per-node=1 | |
#SBATCH --exclusive | |
#SBATCH --time=3-0 | |
#SBATCH --partition=learnfair | |
#SBATCH --error=logs/std-%j.err | |
#SBATCH --output=logs/std-%j.out | |
#SBATCH --gpus-per-node=8 | |
#SBATCH --cpus-per-task=32 | |
#SBATCH --exclude=learnfair[021,025,045,081,082,089,097,098,101,102,103,105] | |
set -x | |
ulimit -c 0 | |
script_name=${1} | |
dataset_file=${2} | |
WANDB_KEY=4c1540ebf8cb9964703ac212a937c00848a79b67 | |
wandb login ${WANDB_KEY} | |
# assume dataset names are split with , do a for loop | |
#!/bin/bash | |
echo "--------------------------------------------------" >> ~/history.txt | |
echo "Slurm job id | job id | command | model | dataset" >> ~/history.txt | |
echo "$SLURM_JOB_ID | $JOB_ID | evaluation | $script_name | $dataset" >> ~/history.txt | |
datasets=$(python -c "import yaml; print(','.join(yaml.safe_load(open('experiments/datasplit/$dataset_file.yaml'))['domains'].split(',')))") | |
IFS=',' read -ra dataset_array <<< "$datasets" | |
# Iterate over the datasets and run the evaluation script for each one | |
for dataset in "${dataset_array[@]}"; do | |
dataset=$(echo "$dataset" | xargs) | |
bash experiments/scripts/eval_action_scripts/run_evaluation_waction_valset_cluster2_raw_accel.sh $script_name $dataset | |
done | |