Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import math | |
import os | |
import random | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from torch.utils.data import Dataset as TorchDataset | |
from datasets.encode_openx_dataset import DATA_FREQ_TABLE | |
from genie.factorization_utils import factorize_token_ids, unfactorize_token_ids | |
from genie.config import GenieConfig | |
from genie.st_mask_git import cosine_schedule | |
def normalize_actions(actions: np.ndarray) -> tuple[np.ndarray, list[list[float]]]: | |
""" | |
compute mean and std of actions. Normalize actions is done inside the network. | |
""" | |
mean = np.mean(actions, axis=0).tolist() | |
std = np.std(actions, axis=0).tolist() | |
return actions, [mean, std] | |
class RawTokenDataset(TorchDataset): | |
""" Loads raw uint32 tokens as memmap-backed array """ | |
def __init__( | |
self, | |
data_dir, | |
window_size, | |
stride=1, | |
filter_interrupts=True, | |
filter_overlaps=False, | |
use_actions=False, | |
name='', | |
max_traj_num=1000000, | |
compute_stride_from_freq_table=True, | |
natural_hz=2, | |
drop_action_ratio=0.0 | |
): | |
""" | |
Args: | |
data_dir: directory with the same format as `data/train_v0` and `data/val_v0`. | |
Notably, has `video.bin` and `metadata.json` | |
window_size: number of frames per "video" sequence | |
stride: frame skip | |
filter_interrupts: Under 3% of training frame sequences are the concatenation of two different clips. | |
If filter_interrupts is True, will filter out these sequences using the segment ids. | |
filter_overlaps: If False (default), one frame will appear in multiple examples; | |
e.g. frame 0 might appear as the first frame in example 0 and also the second frame in example 15. | |
If True, will filter out examples so that each frame appears at most once in the dataset. | |
use_actions: If True, will load the actions from the `actions` folder for the models | |
name: the name of the dataset | |
""" | |
data_dir = Path(data_dir) | |
with open(data_dir / "metadata.json") as f: | |
self.metadata = json.load(f) | |
shape = (self.metadata["num_images"], self.metadata["h"], self.metadata["w"]) # self.metadata["s"], self.metadata["s"] | |
video_tokens_path, segment_ids_path, action_tokens_path = [data_dir / f"{name}.bin" | |
for name in ["video", "segment_ids", "actions"]] | |
token_dtype = np.dtype(self.metadata.get("token_dtype", "uint32")) | |
self.data = np.memmap(video_tokens_path, dtype=token_dtype, mode="r", shape=shape) | |
self.window_size, self.stride = window_size, stride | |
if len(name) == 0: | |
self.name = self.metadata["name"] | |
else: # remove later | |
self.name = name | |
if compute_stride_from_freq_table: | |
self.stride = max(DATA_FREQ_TABLE.get(self.name, 1) // natural_hz, 1) | |
print(f"RawTokenDataset: {self.name=} {self.stride=}") | |
self.n_action = self.metadata.get("action_dim", 1) * (self.stride) | |
self.drop_action_ratio = drop_action_ratio | |
if use_actions: | |
actions = [] | |
# hack here for the separations in the 1x datasets | |
for action_file in sorted((data_dir / "actions").iterdir()): | |
actions.append(np.memmap(action_file, dtype=np.float32, mode="r").reshape(len(self.data), -1)) | |
self.actions = np.concatenate(actions, axis=-1) | |
self.actions, self.action_stat = normalize_actions(self.actions) | |
if os.path.isfile(segment_ids_path): | |
self.segment_ids = np.memmap( | |
segment_ids_path, | |
dtype=np.int32, | |
mode="r", | |
shape=(self.metadata["num_images"],) | |
) | |
else: | |
self.segment_ids = None | |
if filter_interrupts: | |
raise NotImplementedError("Cannot filter interrupted sequences without segment ids.") | |
# Number of frames between the first and last frames of a video sequence (excluding one endpoint frame) | |
self.video_len = (self.window_size - 1) * self.stride | |
self.valid_start_inds = [] | |
for start_ind in range(len(self.data) - self.video_len - self.stride): | |
# Assuming `segment_ids` is monotonically increasing, a sequence is interrupted (or too short) | |
# if the first and last frames have different segment ids. | |
if not (filter_interrupts and self.segment_ids[start_ind] != self.segment_ids[start_ind + self.video_len]): | |
self.valid_start_inds.append(start_ind) | |
if self.segment_ids is not None and self.segment_ids[start_ind] >= max_traj_num: # because we will filter based on window size later | |
# len(self.valid_start_inds) >= max_traj_num | |
break | |
if filter_overlaps: | |
# Instead of using a sliding window, use each frame at most once | |
filtered_start_inds = [] | |
for start_ind in self.valid_start_inds: | |
overlapping_start_inds = {start_ind - i * self.stride for i in range(1, self.window_size)} | |
# all sequences from `overlapping_start_inds` will also contain `start_ind`, | |
# so exclude sequence starting from `start_ind` if any of `overlapping_start_inds` is already being used | |
for existing_start_ind in filtered_start_inds[-self.window_size * self.stride:]: | |
# Bound could be improved | |
if existing_start_ind in overlapping_start_inds: | |
break | |
else: | |
filtered_start_inds.append(start_ind) | |
self.valid_start_inds = filtered_start_inds | |
self.num_videos = len(np.unique(self.valid_start_inds)) | |
print(f"Loaded {len(self)} sequences from {data_dir} {self.stride=} {self.window_size=} {self.n_action=} {self.num_videos=}") | |
def __len__(self): | |
return len(self.valid_start_inds) | |
def __getitem__(self, idx): | |
""" | |
Returns a flattened sequence of tokens representing `self.window_size` frames, | |
spaced `self.stride` apart. | |
""" | |
start_ind = self.valid_start_inds[idx] | |
x = torch.from_numpy((self.data[start_ind : start_ind + self.video_len + 1 : self.stride]).astype(np.int64)) | |
x = x.flatten() # 16 x 16 x 16 | |
# reconstructions since the input ids and the labels are the same | |
attention_mask = torch.ones_like(x) | |
data_dict = { | |
"input_ids": x, | |
"labels": x, | |
"attention_mask": attention_mask, | |
"h": self.metadata["h"], | |
"w": self.metadata["w"], | |
} | |
if hasattr(self, "actions") and np.random.uniform() > self.drop_action_ratio: | |
# we want to have all actions within the stride to predict the next frame at the end of the stride | |
# we will concatenate the actions from [window_size, d_action] to [window_size, d_action * stride] | |
# S x T x d_action | |
data_dict['action_ids'] = self.actions[start_ind:start_ind + self.video_len + self.stride].reshape(self.window_size, -1) | |
data_dict['action_ids'] = torch.from_numpy(data_dict['action_ids'].astype(np.float32)) | |
data_dict["domain"] = self.name | |
return data_dict | |
def get_maskgit_collator(config: GenieConfig): | |
mask_token_id = config.image_vocab_size | |
# h = w = math.isqrt(config.S) | |
def collate_fn(features) -> dict[str, torch.Tensor]: | |
# during training, map (z_0, z_1', z_2') -> (null, z_1, z_2) | |
# (z_0, z_1') -> (null, z_1) is the diffusion operator on z_1' -> z_1 | |
h = features[0]["h"] | |
w = features[0]["w"] | |
input_ids = torch.stack([ex["input_ids"] for ex in features]) | |
device = input_ids.device | |
x_THW = rearrange(input_ids, "b (t h w) -> b t h w", b=len(features), t=config.T, | |
h=h, w=w) | |
x_THWC = factorize_token_ids(x_THW, config.num_factored_vocabs, config.factored_vocab_size) | |
labels = x_THW.clone() | |
if config.dataloader_apply_corruption: | |
# As done in Copilot-4D paper, add random noise sampled with a random rate between 0% and `config.max_corrupt_rate` | |
r = torch.rand(x_THWC.size(), device=device) | |
u01 = torch.rand((), device=device) | |
random_patches_mask = r < config.max_corrupt_rate * u01 | |
random_values = torch.randint(low=0, high=config.factored_vocab_size, size=x_THWC.size(), | |
dtype=torch.long, device=device) | |
x_THWC[random_patches_mask] = random_values[random_patches_mask] | |
if random.random() < config.non_mlm_ratio: # Closer to autoregressive inference | |
# Leave frames [0, first_masked_frame) unmasked. | |
# first_masked_frame = random.randint(config.num_prompt_frames, config.T - 1) | |
first_masked_frame = random.randint(config.num_prompt_frames, config.T - 1) | |
x_THWC_view = x_THWC[:, first_masked_frame:] | |
# Arbitrary numbers here, but corrupting later frames more | |
# since we likely have compounding errors. | |
correct_rate = random.uniform(config.dataloader_mask_ratio_min, 1.0) | |
for i in range(x_THWC_view.size(1)): | |
correct_rate *= random.uniform(0.9, 1.0) | |
r = torch.rand((len(features), h, w, config.num_factored_vocabs), device=device) | |
random_patches_mask = r > correct_rate | |
x_THWC_view[:, i][random_patches_mask] = random_values[:, first_masked_frame + i][random_patches_mask] | |
else: # Typical MLM masking | |
first_masked_frame = 1 | |
mask = torch.zeros(1) | |
if config.dataloader_apply_mask: | |
c = 0 | |
while mask.max() == 0: # We could get unlucky and mask no tokens? | |
# per-minibatch, per-frame masking probability (could try variable masking rate from MUSE) | |
mask_prob_T = cosine_schedule(torch.rand(len(features), config.T - first_masked_frame, 1, 1)) | |
r = torch.rand_like(x_THW[:, first_masked_frame:], dtype=torch.float) | |
mask = r < mask_prob_T | |
c += 1 | |
if c > 1: | |
print(f"Generated mask {c} > 1 times.") | |
x_THW = unfactorize_token_ids(x_THWC, config.num_factored_vocabs, config.factored_vocab_size) | |
x_THW[:, first_masked_frame:][mask] = mask_token_id | |
data_dict = { | |
"input_ids": rearrange(x_THW, "b t h w -> b (t h w)"), | |
"labels": rearrange(labels, "b t h w -> b (t h w)"), | |
} | |
if "action_ids" in features[0]: | |
data_dict['action_ids'] = torch.stack([ex["action_ids"] for ex in features]) | |
data_dict['domain'] = [ex["domain"] for ex in features] | |
data_dict['h'] = [ex["h"] for ex in features] | |
data_dict['w'] = [ex["w"] for ex in features] | |
return data_dict | |
return collate_fn | |