hma / raw_image_data.py
LeroyWaa's picture
draft
246c106
import json
import math
import os
import random
from pathlib import Path
import numpy as np
import torch
from einops import rearrange
from torch.utils.data import Dataset as TorchDataset
from datasets.encode_openx_dataset import DATA_FREQ_TABLE
from genie.config import GenieConfig
from genie.st_mask_git import cosine_schedule
def normalize_actions(actions):
"""
compute mean and std of actions. Normalize actions is done inside the network.
"""
mean = np.mean(actions, axis=0).tolist()
std = np.std(actions, axis=0).tolist()
return actions, [mean, std]
class RawImageDataset(TorchDataset):
""" Loads raw uint8 tokens as memmap-backed array """
def __init__(
self,
data_dir,
window_size,
stride=1,
filter_interrupts=True,
filter_overlaps=False,
use_actions=False,
max_traj_num=1000000,
compute_stride_from_freq_table=True,
natural_hz=2,
datio_noise_ratio=0.0,
domain=None,
):
"""
Args:
data_dir: directory with the same format as `data/train_v0` and `data/val_v0`.
Notably, has `video.bin` and `metadata.json`
window_size: number of frames per "video" sequence
stride: frame skip
filter_interrupts: Under 3% of training frame sequences are the concatenation of two different clips.
If filter_interrupts is True, will filter out these sequences using the segment ids.
filter_overlaps: If False (default), one frame will appear in multiple examples;
e.g. frame 0 might appear as the first frame in example 0 and also the second frame in example 15.
If True, will filter out examples so that each frame appears at most once in the dataset.
use_actions: If True, will load the actions from the `actions` folder for the models
"""
data_dir = Path(data_dir)
with open(data_dir / "metadata.json") as f:
self.metadata = json.load(f)
# TODO: assert not quantized in metadata
shape = (self.metadata["num_images"], self.metadata["h"], self.metadata["w"], 3) #
video_tokens_path, segment_ids_path, action_tokens_path = [data_dir / f"{name}.bin"
for name in ["video", "segment_ids", "actions"]]
token_dtype = np.dtype(self.metadata.get("token_dtype", "uint8"))
self.data = np.memmap(video_tokens_path, mode="r", shape=shape, dtype=token_dtype)
self.window_size, self.stride = window_size, stride
self.datio_noise_ratio = datio_noise_ratio
if domain is not None: # TODO: remove
self.name = domain
else:
self.name = self.metadata["name"]
if compute_stride_from_freq_table:
self.stride = max(DATA_FREQ_TABLE.get(self.name, 1) // natural_hz, 1)
self.n_action = self.metadata.get("action_dim", 1) * (self.stride)
# actions/ - a folder of action arrays stored in np.float32 format. For frame i,
# the corresponding action is given by joint_pos[i], driving_command[i], neck_desired[i]
if use_actions:
actions = []
# hack here for the separations in the 1x datasets
for action_file in sorted((data_dir / "actions").iterdir()):
actions.append(np.memmap(action_file, dtype=np.float32, mode="r").reshape(len(self.data), -1))
self.actions = np.concatenate(actions, axis=-1)
self.actions, self.action_stat = normalize_actions(self.actions)
if os.path.isfile(segment_ids_path):
self.segment_ids = np.memmap(
segment_ids_path,
dtype=np.int32,
mode="r",
shape=(self.metadata["num_images"],)
)
else:
self.segment_ids = None
if filter_interrupts:
raise NotImplementedError("Cannot filter interrupted sequences without segment ids.")
# Number of frames between the first and last frames of a video sequence (excluding one endpoint frame)
self.video_len = (self.window_size - 1) * self.stride
self.valid_start_inds = []
for start_ind in range(len(self.data) - self.video_len - self.stride):
# Assuming `segment_ids` is monotonically increasing, a sequence is interrupted (or too short)
# if the first and last frames have different segment ids.
if not (filter_interrupts and self.segment_ids[start_ind] != self.segment_ids[start_ind + self.video_len]):
self.valid_start_inds.append(start_ind)
if len(self.valid_start_inds) >= max_traj_num:
break
if filter_overlaps:
# Instead of using a sliding window, use each frame at most once
filtered_start_inds = []
for start_ind in self.valid_start_inds:
overlapping_start_inds = {start_ind - i * self.stride for i in range(1, self.window_size)}
# all sequences from `overlapping_start_inds` will also contain `start_ind`,
# so exclude sequence starting from `start_ind` if any of `overlapping_start_inds` is already being used
for existing_start_ind in filtered_start_inds[-self.window_size * self.stride:]:
# Bound could be improved
if existing_start_ind in overlapping_start_inds:
break
else:
filtered_start_inds.append(start_ind)
self.valid_start_inds = filtered_start_inds
print(f"Loaded {len(self)} sequences from {data_dir} {self.stride=} {self.window_size=} {self.n_action=}")
def __len__(self):
return len(self.valid_start_inds)
def __getitem__(self, idx):
"""
Returns a flattened sequence of tokens representing `self.window_size` frames,
spaced `self.stride` apart.
"""
start_ind = self.valid_start_inds[idx]
x = self.data[start_ind : start_ind + self.video_len + 1 : self.stride].copy()
x = torch.FloatTensor(x).float()
# reconstructions since the input ids and the labels are the same
attention_mask = torch.ones_like(x)
data_dict = {
"images": x,
"labels": x, # Do we need labels/attention mask?
"attention_mask": attention_mask,
"h": self.metadata["h"],
"w": self.metadata["w"],
}
if hasattr(self, "actions"):
# we want to have all actions within the stride to predict the next frame at the end of the stride
# we will concatenate the actions from [window_size, d_action] to [window_size, d_action * stride]
data_dict['action_ids'] = self.actions[start_ind:start_ind + self.video_len + self.stride].reshape(self.window_size, -1)
data_dict['action_ids'] = torch.from_numpy(data_dict['action_ids'].astype(np.float32))
data_dict["domain"] = self.name
return data_dict