File size: 13,935 Bytes
b1e1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#!/usr/bin/env python3
# Copyright    2023                            (authors: Feiteng Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Pattern, Union

import numpy as np
import torch
import torchaudio
from encodec import EncodecModel
from encodec.utils import convert_audio
from phonemizer.backend import EspeakBackend
from phonemizer.backend.espeak.language_switch import LanguageSwitch
from phonemizer.backend.espeak.words_mismatch import WordMismatch
from phonemizer.punctuation import Punctuation
from phonemizer.separator import Separator
from phonemizer.separator import Separator

try:
    from pypinyin import Style, pinyin
    from pypinyin.style._utils import get_finals, get_initials
except Exception:
    pass


class PypinyinBackend:
    """PypinyinBackend for Chinese. Most codes is referenced from espnet.
    There are two types pinyin or initials_finals, one is
    just like "ni1 hao3", the other is like "n i1 h ao3".
    """

    def __init__(
        self,
        backend="initials_finals",
        punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(),
    ) -> None:
        self.backend = backend
        self.punctuation_marks = punctuation_marks

    def phonemize(
        self, text: List[str], separator: Separator, strip=True, njobs=1
    ) -> List[str]:
        assert isinstance(text, List)
        phonemized = []
        for _text in text:
            _text = re.sub(" +", " ", _text.strip())
            _text = _text.replace(" ", separator.word)
            phones = []
            if self.backend == "pypinyin":
                for n, py in enumerate(
                    pinyin(
                        _text, style=Style.TONE3, neutral_tone_with_five=True
                    )
                ):
                    if all([c in self.punctuation_marks for c in py[0]]):
                        if len(phones):
                            assert phones[-1] == separator.syllable
                            phones.pop(-1)

                        phones.extend(list(py[0]))
                    else:
                        phones.extend([py[0], separator.syllable])
            elif self.backend == "pypinyin_initials_finals":
                for n, py in enumerate(
                    pinyin(
                        _text, style=Style.TONE3, neutral_tone_with_five=True
                    )
                ):
                    if all([c in self.punctuation_marks for c in py[0]]):
                        if len(phones):
                            assert phones[-1] == separator.syllable
                            phones.pop(-1)
                        phones.extend(list(py[0]))
                    else:
                        if py[0][-1].isalnum():
                            initial = get_initials(py[0], strict=False)
                            if py[0][-1].isdigit():
                                final = (
                                    get_finals(py[0][:-1], strict=False)
                                    + py[0][-1]
                                )
                            else:
                                final = get_finals(py[0], strict=False)
                            phones.extend(
                                [
                                    initial,
                                    separator.phone,
                                    final,
                                    separator.syllable,
                                ]
                            )
                        else:
                            assert ValueError
            else:
                raise NotImplementedError
            phonemized.append(
                "".join(phones).rstrip(f"{separator.word}{separator.syllable}")
            )
        return phonemized


class TextTokenizer:
    """Phonemize Text."""

    def __init__(
        self,
        language="en-us",
        backend="espeak",
        separator=Separator(word="_", syllable="-", phone="|"),
        preserve_punctuation=True,
        punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(),
        with_stress: bool = False,
        tie: Union[bool, str] = False,
        language_switch: LanguageSwitch = "keep-flags",
        words_mismatch: WordMismatch = "ignore",
    ) -> None:
        if backend == "espeak":
            phonemizer = EspeakBackend(
                language,
                punctuation_marks=punctuation_marks,
                preserve_punctuation=preserve_punctuation,
                with_stress=with_stress,
                tie=tie,
                language_switch=language_switch,
                words_mismatch=words_mismatch,
            )
        elif backend in ["pypinyin", "pypinyin_initials_finals"]:
            phonemizer = PypinyinBackend(
                backend=backend,
                punctuation_marks=punctuation_marks + separator.word,
            )
        else:
            raise NotImplementedError(f"{backend}")

        self.backend = phonemizer
        self.separator = separator

    def to_list(self, phonemized: str) -> List[str]:
        fields = []
        for word in phonemized.split(self.separator.word):
            # "ɐ    m|iː|n?"    ɹ|ɪ|z|ɜː|v; h|ɪ|z.
            pp = re.findall(r"\w+|[^\w\s]", word, re.UNICODE)
            fields.extend(
                [p for p in pp if p != self.separator.phone]
                + [self.separator.word]
            )
        assert len("".join(fields[:-1])) == len(phonemized) - phonemized.count(
            self.separator.phone
        )
        return fields[:-1]

    def __call__(self, text, strip=True) -> List[List[str]]:
        if isinstance(text, str):
            text = [text]

        phonemized = self.backend.phonemize(
            text, separator=self.separator, strip=strip, njobs=1
        )
        return [self.to_list(p) for p in phonemized]


def tokenize_text(tokenizer: TextTokenizer, text: str) -> List[str]:
    phonemes = tokenizer([text.strip()])
    return phonemes[0]  # k2symbols


def remove_encodec_weight_norm(model):
    from encodec.modules import SConv1d
    from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock
    from torch.nn.utils import remove_weight_norm

    encoder = model.encoder.model
    for key in encoder._modules:
        if isinstance(encoder._modules[key], SEANetResnetBlock):
            remove_weight_norm(encoder._modules[key].shortcut.conv.conv)
            block_modules = encoder._modules[key].block._modules
            for skey in block_modules:
                if isinstance(block_modules[skey], SConv1d):
                    remove_weight_norm(block_modules[skey].conv.conv)
        elif isinstance(encoder._modules[key], SConv1d):
            remove_weight_norm(encoder._modules[key].conv.conv)

    decoder = model.decoder.model
    for key in decoder._modules:
        if isinstance(decoder._modules[key], SEANetResnetBlock):
            remove_weight_norm(decoder._modules[key].shortcut.conv.conv)
            block_modules = decoder._modules[key].block._modules
            for skey in block_modules:
                if isinstance(block_modules[skey], SConv1d):
                    remove_weight_norm(block_modules[skey].conv.conv)
        elif isinstance(decoder._modules[key], SConvTranspose1d):
            remove_weight_norm(decoder._modules[key].convtr.convtr)
        elif isinstance(decoder._modules[key], SConv1d):
            remove_weight_norm(decoder._modules[key].conv.conv)


class AudioTokenizer:
    """EnCodec audio."""

    def __init__(
        self,
        device: Any = None,
    ) -> None:
        # Instantiate a pretrained EnCodec model
        model = EncodecModel.encodec_model_24khz()
        model.set_target_bandwidth(6.0)
        remove_encodec_weight_norm(model)

        if not device:
            device = torch.device("cpu")
            if torch.cuda.is_available():
                device = torch.device("cuda:0")

        self._device = device

        self.codec = model.to(device)
        self.sample_rate = model.sample_rate
        self.channels = model.channels

    @property
    def device(self):
        return self._device

    def encode(self, wav: torch.Tensor) -> torch.Tensor:
        return self.codec.encode(wav.to(self.device))

    def decode(self, frames: torch.Tensor) -> torch.Tensor:
        return self.codec.decode(frames)


def tokenize_audio(tokenizer: AudioTokenizer, audio):
    # Load and pre-process the audio waveform
    if isinstance(audio, str):
        wav, sr = torchaudio.load(audio)
    else:
        wav, sr = audio
    wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels)
    wav = wav.unsqueeze(0)

    # Extract discrete codes from EnCodec
    with torch.no_grad():
        encoded_frames = tokenizer.encode(wav)
    return encoded_frames


# @dataclass
# class AudioTokenConfig:
#     frame_shift: Seconds = 320.0 / 24000
#     num_quantizers: int = 8
#
#     def to_dict(self) -> Dict[str, Any]:
#         return asdict(self)
#
#     @staticmethod
#     def from_dict(data: Dict[str, Any]) -> "AudioTokenConfig":
#         return AudioTokenConfig(**data)
#
#
# class AudioTokenExtractor(FeatureExtractor):
#     name = "encodec"
#     config_type = AudioTokenConfig
#
#     def __init__(self, config: Optional[Any] = None):
#         super(AudioTokenExtractor, self).__init__(config)
#         self.tokenizer = AudioTokenizer()
#
#     def extract(
#         self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int
#     ) -> np.ndarray:
#         if not isinstance(samples, torch.Tensor):
#             samples = torch.from_numpy(samples)
#         if sampling_rate != self.tokenizer.sample_rate:
#             samples = convert_audio(
#                 samples,
#                 sampling_rate,
#                 self.tokenizer.sample_rate,
#                 self.tokenizer.channels,
#             )
#         if len(samples.shape) == 2:
#             samples = samples.unsqueeze(0)
#         else:
#             raise ValueError()
#
#         device = self.tokenizer.device
#         encoded_frames = self.tokenizer.encode(samples.detach().to(device))
#         codes = encoded_frames[0][0]  # [B, n_q, T]
#         if True:
#             duration = round(samples.shape[-1] / sampling_rate, ndigits=12)
#             expected_num_frames = compute_num_frames(
#                 duration=duration,
#                 frame_shift=self.frame_shift,
#                 sampling_rate=sampling_rate,
#             )
#             assert abs(codes.shape[-1] - expected_num_frames) <= 1
#             codes = codes[..., :expected_num_frames]
#         return codes.cpu().squeeze(0).permute(1, 0).numpy()
#
#     @property
#     def frame_shift(self) -> Seconds:
#         return self.config.frame_shift
#
#     def feature_dim(self, sampling_rate: int) -> int:
#         return self.config.num_quantizers
#
#     def pad_tensor_list(self, tensor_list, device, padding_value=0):
#         # 计算每个张量的长度
#         lengths = [tensor.shape[0] for tensor in tensor_list]
#         # 使用pad_sequence函数进行填充
#         tensor_list = [torch.Tensor(t).to(device) for t in tensor_list]
#         padded_tensor = torch.nn.utils.rnn.pad_sequence(
#             tensor_list, batch_first=True, padding_value=padding_value
#         )
#         return padded_tensor, lengths
#
#     def extract_batch(self, samples, sampling_rate, lengths) -> np.ndarray:
#         samples = [wav.squeeze() for wav in samples]
#         device = self.tokenizer.device
#         samples, lengths = self.pad_tensor_list(samples, device)
#         samples = samples.unsqueeze(1)
#
#         if not isinstance(samples, torch.Tensor):
#             samples = torch.from_numpy(samples)
#         if len(samples.shape) != 3:
#             raise ValueError()
#         if sampling_rate != self.tokenizer.sample_rate:
#             samples = [
#                 convert_audio(
#                     wav,
#                     sampling_rate,
#                     self.tokenizer.sample_rate,
#                     self.tokenizer.channels,
#                 )
#                 for wav in samples
#             ]
#         # Extract discrete codes from EnCodec
#         with torch.no_grad():
#             encoded_frames = self.tokenizer.encode(samples.detach().to(device))
#         encoded_frames = encoded_frames[0][0]  # [B, n_q, T]
#         batch_codes = []
#         for b, length in enumerate(lengths):
#             codes = encoded_frames[b]
#             duration = round(length / sampling_rate, ndigits=12)
#             expected_num_frames = compute_num_frames(
#                 duration=duration,
#                 frame_shift=self.frame_shift,
#                 sampling_rate=sampling_rate,
#             )
#             batch_codes.append(codes[..., :expected_num_frames])
#         return [codes.cpu().permute(1, 0).numpy() for codes in batch_codes]


if __name__ == "__main__":
    model = EncodecModel.encodec_model_24khz()
    model.set_target_bandwidth(6.0)

    samples = torch.from_numpy(np.random.random([4, 1, 1600])).type(
        torch.float32
    )
    codes_raw = model.encode(samples)

    remove_encodec_weight_norm(model)
    codes_norm = model.encode(samples)

    assert torch.allclose(codes_raw[0][0], codes_norm[0][0])