File size: 30,923 Bytes
b1e1a76 d90cf30 b1e1a76 f330917 b1e1a76 d90cf30 b1e1a76 1d0192f b1e1a76 f330917 b1e1a76 cf8f15a b1e1a76 1d0192f b1e1a76 e0708dc d90cf30 b1e1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
# Copyright 2023 (authors: Feiteng Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from typing import Dict, Iterator, List, Tuple, Union
import gc
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# from icefall.utils import make_pad_mask
# from torchmetrics.classification import MulticlassAccuracy
from modules.embedding import SinePositionalEmbedding, TokenEmbedding
from modules.transformer import (
AdaptiveLayerNorm,
LayerNorm,
TransformerDecoderLayer,
TransformerEncoder,
TransformerEncoderLayer,
)
from .macros import NUM_AUDIO_TOKENS, NUM_TEXT_TOKENS
import psutil
def get_memory_usage():
process = psutil.Process()
memory_info = process.memory_info()
memory_used = memory_info.rss
memory_used_mb = memory_used / (1024 * 1024)
return memory_used_mb
class Transpose(nn.Identity):
"""(N, T, D) -> (N, D, T)"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return input.transpose(1, 2)
# NOTE: There are two ways to implement the model
# 1) [VALL-F] standard TransformerDecoder, use x as memory
# 2) [VALL-E] modified TransformerDecoder like GPT-x(e.g. causal TransformerEncoder),
# use x as the prefix of decoder inputs
class VALLF(nn.Module):
"""It implements https://arxiv.org/abs/2301.02111
"Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers"
"""
def __init__(
self,
d_model: int,
nhead: int,
num_layers: int,
norm_first: bool = True,
add_prenet: bool = False,
decoder_cls: Union[
nn.TransformerDecoder, nn.TransformerEncoder
] = nn.TransformerDecoder,
decoder_layer_cls: Union[
TransformerDecoderLayer, TransformerEncoderLayer
] = TransformerDecoderLayer,
prefix_mode: int = 0,
share_embedding: bool = True,
nar_scale_factor: float = 1.0,
prepend_bos: bool = True,
num_quantizers: int = 8,
):
"""
Args:
d_model:
The number of expected features in the input (required).
nhead:
The number of heads in the multiheadattention models (required).
num_layers:
The number of sub-decoder-layers in the decoder (required).
"""
super().__init__()
nar_d_model = int(d_model * nar_scale_factor)
self.ar_text_embedding = TokenEmbedding(d_model, NUM_TEXT_TOKENS) # W_x
self.nar_text_embedding = TokenEmbedding(nar_d_model, NUM_TEXT_TOKENS)
# ID NUM_AUDIO_TOKENS -> PAD
# ID NUM_AUDIO_TOKENS + 1 -> BOS
self.ar_audio_prepend_bos = prepend_bos
self.ar_audio_embedding = TokenEmbedding(
d_model, NUM_AUDIO_TOKENS + 1 + int(prepend_bos)
)
# PreNet
if add_prenet:
self.ar_text_prenet = nn.Sequential(
Transpose(),
nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"),
nn.BatchNorm1d(d_model),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"),
nn.BatchNorm1d(d_model),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"),
nn.BatchNorm1d(d_model),
nn.ReLU(),
nn.Dropout(0.5),
Transpose(),
nn.Linear(d_model, d_model),
)
self.ar_audio_prenet = nn.Sequential(
nn.Linear(d_model, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, d_model),
)
else:
self.ar_text_prenet = nn.Identity()
self.ar_audio_prenet = nn.Identity()
self.ar_text_position = SinePositionalEmbedding(
d_model,
dropout=0.1,
scale=False,
alpha=True,
)
self.ar_audio_position = SinePositionalEmbedding(
d_model,
dropout=0.1,
scale=False,
alpha=True,
)
self.ar_decoder = decoder_cls(
decoder_layer_cls(
d_model,
nhead,
dim_feedforward=d_model * 4,
dropout=0.1,
batch_first=True,
norm_first=norm_first,
),
num_layers=num_layers,
norm=LayerNorm(d_model) if norm_first else None,
)
self.ar_predict_layer = nn.Linear(
d_model, NUM_AUDIO_TOKENS + 1, bias=False
)
self.rng = random.Random(0)
self.num_heads = nhead
self.prefix_mode = prefix_mode
self.num_quantizers = num_quantizers
assert num_quantizers >= 1
if num_quantizers > 1:
self.nar_audio_embeddings = nn.ModuleList(
[TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS + 1)]
+ [
TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS)
for i in range(num_quantizers - 1)
]
) # W_a
# PreNet
if add_prenet:
self.nar_text_prenet = nn.Sequential(
Transpose(),
nn.Conv1d(
nar_d_model, nar_d_model, kernel_size=5, padding="same"
),
nn.BatchNorm1d(nar_d_model),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(
nar_d_model, nar_d_model, kernel_size=5, padding="same"
),
nn.BatchNorm1d(nar_d_model),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(
nar_d_model, nar_d_model, kernel_size=5, padding="same"
),
nn.BatchNorm1d(nar_d_model),
nn.ReLU(),
nn.Dropout(0.5),
Transpose(),
nn.Linear(nar_d_model, nar_d_model),
)
self.nar_audio_prenet = nn.Sequential(
nn.Linear(nar_d_model, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, nar_d_model),
)
else:
self.nar_text_prenet = nn.Identity()
self.nar_audio_prenet = nn.Identity()
self.nar_text_position = SinePositionalEmbedding(
nar_d_model,
dropout=0.0,
scale=False,
alpha=False,
)
self.nar_audio_position = SinePositionalEmbedding(
nar_d_model,
dropout=0.1,
scale=False,
alpha=False,
)
self.nar_decoder = decoder_cls(
decoder_layer_cls(
nar_d_model,
int(nhead * nar_scale_factor),
dim_feedforward=nar_d_model * 4,
dropout=0.1,
batch_first=True,
norm_first=norm_first,
adaptive_layer_norm=True,
),
num_layers=int(num_layers * nar_scale_factor),
norm=AdaptiveLayerNorm(
nar_d_model, norm=nn.LayerNorm(nar_d_model)
)
if norm_first
else None,
)
self.nar_predict_layers = nn.ModuleList(
[
nn.Linear(nar_d_model, NUM_AUDIO_TOKENS, bias=False)
for i in range(num_quantizers - 1)
]
)
self.nar_stage_embeddings = nn.ModuleList(
[
TokenEmbedding(nar_d_model, 1)
for i in range(num_quantizers - 1)
]
)
if share_embedding:
# We share the parameters of the output projection layer with the parameters of the acoustic embedding Wa
# NOTE(Feiteng): In the experiment, this undermines accuracy
# self.ar_predict_layer.weight = self.ar_audio_embedding.weight
# We also share the parameters of the acoustic embedding layer and the output prediction layer,
# which means the weights of the j-th prediction layer are the same as the (j + 1)-th acoustic embedding layer.
for j in range(0, num_quantizers - 2):
self.nar_predict_layers[
j
].weight = self.nar_audio_embeddings[j + 2].weight
def stage_parameters(self, stage: int = 1) -> Iterator[nn.Parameter]:
assert stage > 0
if stage == 1:
for name, param in self.named_parameters():
if name.startswith("ar_"):
print(f" AR parameter: {name}")
yield param
if stage == 2:
for name, param in self.named_parameters():
if name.startswith("nar_"):
print(f"NAR parameter: {name}")
yield param
def stage_named_parameters(
self, stage: int = 1
) -> Iterator[Tuple[str, nn.Parameter]]:
assert stage > 0
if stage == 1:
for pair in self.named_parameters():
if pair[0].startswith("ar_"):
yield pair
if stage == 2:
for pair in self.named_parameters():
if pair[0].startswith("nar_"):
yield pair
def pad_y_eos(self, y, y_mask_int, eos_id):
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
y_mask_int, (0, 1), value=1
)
# inputs, targets
if self.ar_audio_prepend_bos:
return (
F.pad(targets[:, :-1], (1, 0), value=NUM_AUDIO_TOKENS + 1),
targets,
)
return targets[:, :-1], targets[:, 1:]
def _prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes, prefix_mode):
# 5.1 For the NAR acoustic prompt tokens, we select a random segment waveform of 3 seconds
# from the same utterance.
# We implement this differently.
if prefix_mode == 0:
# no prefix
prefix_len = 0
y_emb = self.nar_audio_embeddings[0](y)
for j in range(1, nar_stage):
# Formula (4) (5)
y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j])
elif prefix_mode == 1:
# prefix at begining
int_low = (0.25 * y_lens.min()).type(torch.int64).item()
prefix_len = torch.randint(0, int_low * 2, size=()).item()
prefix_len = min(prefix_len, 225) # 24000/320 * 3s = 225 frames
y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len])
y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:])
for j in range(1, self.num_quantizers):
y_prompts += self.nar_audio_embeddings[j](
codes[:, :prefix_len, j]
)
if j < nar_stage:
y_emb += self.nar_audio_embeddings[j](
codes[:, prefix_len:, j]
)
y_emb = torch.concat([y_prompts, y_emb], axis=1)
elif prefix_mode in [2, 4]:
if prefix_mode == 2:
# random prefix
prefix_len = min(225, int(0.25 * y_lens.min().item()))
y_prompts_codes = []
for b in range(codes.shape[0]):
start = self.rng.randint(0, y_lens[b].item() - prefix_len)
y_prompts_codes.append(
torch.clone(codes[b, start : start + prefix_len])
)
codes[
b, start : start + prefix_len, nar_stage
] = NUM_AUDIO_TOKENS
y_prompts_codes = torch.stack(y_prompts_codes, dim=0)
else:
prefix_len = y_prompts_codes.shape[1]
y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0])
y_emb = self.nar_audio_embeddings[0](y)
for j in range(1, self.num_quantizers):
y_prompts += self.nar_audio_embeddings[j](
y_prompts_codes[..., j]
)
if j < nar_stage:
y_emb += self.nar_audio_embeddings[j](codes[..., j])
y_emb = torch.concat([y_prompts, y_emb], axis=1)
else:
raise ValueError
return y_emb, prefix_len
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: Union[torch.Tensor],
y_lens: Union[torch.Tensor],
reduction: str = "sum",
train_stage: int = 0,
**kwargs,
) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]:
raise NotImplementedError
def inference(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
enroll_x_lens: Union[torch.Tensor, None] = None,
top_k: int = -100,
temperature: float = 1.0,
) -> torch.Tensor:
raise NotImplementedError
def visualize(
self,
predicts: Tuple[torch.Tensor],
batch: Dict[str, Union[List, torch.Tensor]],
output_dir: str,
limit: int = 4,
) -> None:
raise NotImplementedError
class VALLE(VALLF):
"""It implements https://arxiv.org/abs/2301.02111
"Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers"
"""
def __init__(
self,
d_model: int,
nhead: int,
num_layers: int,
norm_first: bool = True,
add_prenet: bool = False,
prefix_mode: int = 0,
share_embedding: bool = True,
nar_scale_factor: float = 1.0,
**kwargs,
):
"""
Args:
d_model:
The number of expected features in the input (required).
nhead:
The number of heads in the multiheadattention models (required).
num_layers:
The number of sub-decoder-layers in the decoder (required).
"""
super(VALLE, self).__init__(
d_model,
nhead,
num_layers,
norm_first=norm_first,
add_prenet=add_prenet,
decoder_cls=TransformerEncoder,
decoder_layer_cls=TransformerEncoderLayer,
prefix_mode=prefix_mode,
share_embedding=share_embedding,
nar_scale_factor=nar_scale_factor,
**kwargs,
)
self.language_ID = {
'en': 0,
'zh': 1,
'ja': 2,
}
self.ar_language_embedding = TokenEmbedding(d_model, len(self.language_ID))
self.nar_language_embedding = TokenEmbedding(d_model, len(self.language_ID))
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: Union[torch.Tensor],
y_lens: Union[torch.Tensor],
reduction: str = "sum",
train_stage: int = 0,
**kwargs,
):
raise NotImplementedError
def inference(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
enroll_x_lens: torch.Tensor,
top_k: int = -100,
temperature: float = 1.0,
prompt_language: str = None,
text_language: str = None,
) -> torch.Tensor:
"""
Args:
x:
A 2-D tensor of shape (1, S).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, 8).
top_k: (`optional`) int
The number of highest probability tokens to keep for top-k-filtering. Default to -100.
temperature: (`optional`) float
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
Returns:
Return the predicted audio code matrix.
"""
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
assert y.shape[0] == 1, y.shape
assert torch.all(x_lens > 0)
# NOTE: x has been padded in TextTokenCollater
text = x
x = self.ar_text_embedding(text)
# Add language embedding
prompt_language_id = torch.LongTensor(np.array([self.language_ID[prompt_language]])).to(x.device)
if isinstance(text_language, str):
text_language_id = torch.LongTensor(np.array([self.language_ID[text_language]])).to(x.device)
elif isinstance(text_language, List):
text_language_id = torch.LongTensor(np.array([self.language_ID[tl] for tl in text_language])).to(x.device)
x[:, :enroll_x_lens, :] += self.ar_language_embedding(prompt_language_id)
x[:, enroll_x_lens:, :] += self.ar_language_embedding(text_language_id)
x = self.ar_text_prenet(x)
x = self.ar_text_position(x)
text_len = x_lens.max()
prompts = y
prefix_len = y.shape[1]
# AR Decoder
# TODO: Managing decoder steps avoid repetitive computation
y = prompts[..., 0]
if self.ar_audio_prepend_bos:
y = F.pad(y, (1, 0), value=NUM_AUDIO_TOKENS + 1)
x_len = x_lens.max()
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
kv_cache = None
use_kv_caching = True
while True:
y_emb = self.ar_audio_embedding(y)
y_emb = self.ar_audio_prenet(y_emb)
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
y_len = y.shape[1]
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1
),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat(
[x_attn_mask_pad, y_attn_mask], dim=0
).to(y.device)
if use_kv_caching and kv_cache is not None:
xy_pos = xy_pos[:, [-1]]
else:
pass
xy_dec, kv_cache = self.ar_decoder.infer(
xy_pos,
mask=xy_attn_mask,
past_kv=kv_cache,
use_cache=use_kv_caching,
)
# xy_dec, _ = self.ar_decoder(
# (xy_pos, None),
# mask=xy_attn_mask,
# )
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = topk_sampling(
logits, top_k=top_k, top_p=1, temperature=temperature
)
if (
torch.argmax(logits, dim=-1)[0] == NUM_AUDIO_TOKENS
or samples[0, 0] == NUM_AUDIO_TOKENS
or (y.shape[1] - prompts.shape[1]) > x_lens.max() * 16
):
if prompts.shape[1] == y.shape[1]:
raise SyntaxError(
"well trained model shouldn't reach here."
)
print(f"VALL-E EOS [{prompts.shape[1]} -> {y.shape[1]}]")
memory_used = get_memory_usage()
print(f"Current memory used: {memory_used:.2f} MB")
break
# safety measure, break if token sequence too long
if y.shape[1] > 2250:
print(f"VALL-E EOS [{prompts.shape[1]} -> {y.shape[1]}]")
break
y = torch.concat([y, samples], dim=1)
codes = [y[:, prefix_len + int(self.ar_audio_prepend_bos) :]]
if self.num_quantizers == 1:
return torch.stack(codes, dim=-1)
# Non-AR Decoders
y_emb = self.nar_audio_embeddings[0](
y[:, int(self.ar_audio_prepend_bos) :]
)
if self.prefix_mode in [2, 4]: # Exclude enrolled_phonemes
enrolled_len = enroll_x_lens.max().item()
# SOS + Synthesis Text + EOS
text = torch.concat(
[
text[:, :1],
text[:, enrolled_len - 1 :],
],
dim=1,
)
text_len = text_len - (enrolled_len - 2)
assert text.shape[0] == 1
x = self.nar_text_embedding(text)
# Add language embedding
prompt_language_id = torch.LongTensor(np.array([self.language_ID[prompt_language]])).to(x.device)
if isinstance(text_language, str):
text_language_id = torch.LongTensor(np.array([self.language_ID[text_language]])).to(x.device)
elif isinstance(text_language, List):
text_language_id = torch.LongTensor(np.array([self.language_ID[tl] for tl in text_language])).to(x.device)
x[:, :enroll_x_lens, :] += self.nar_language_embedding(prompt_language_id)
x[:, enroll_x_lens:, :] += self.nar_language_embedding(text_language_id)
x = self.nar_text_prenet(x)
x = self.nar_text_position(x)
if self.prefix_mode == 0:
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_prenet(y_emb)
y_pos = self.nar_audio_position(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < self.num_quantizers - 2:
y_emb[:, :prefix_len] += embedding_layer(
prompts[..., i + 1]
)
y_emb[:, prefix_len:] += embedding_layer(samples)
else:
for j in range(1, self.num_quantizers):
y_emb[:, :prefix_len] += self.nar_audio_embeddings[j](
prompts[..., j]
)
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_prenet(y_emb)
y_pos = self.nar_audio_position(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < self.num_quantizers - 2:
y_emb[:, prefix_len:] += embedding_layer(samples)
assert len(codes) == self.num_quantizers
del text_language_id, prompt_language_id, y_emb, x, y_pos, xy_pos, xy_dec, logits, samples, kv_cache, x_attn_mask, y_attn_mask, xy_attn_mask
gc.collect()
return torch.stack(codes, dim=-1)
def continual(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
) -> torch.Tensor:
"""
Args:
x:
A 2-D tensor of shape (1, S).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, 8).
Returns:
Return the predicted audio code matrix.
"""
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
assert y.shape[0] == 1, y.shape
assert torch.all(x_lens > 0)
assert self.num_quantizers == 8
# NOTE: x has been padded in TextTokenCollater
text = x
x = self.ar_text_embedding(text)
x = self.ar_text_prenet(x)
x = self.ar_text_position(x)
text_len = x_lens.max()
prefix_len = min(int(y.shape[1] * 0.5), 3 * 75)
# AR Decoder
prompts = y[:, :prefix_len]
codes = [y[:, prefix_len:, 0]]
# Non-AR Decoders
x = self.nar_text_embedding(text)
x = self.nar_text_prenet(x)
x = self.nar_text_position(x)
y_emb = self.nar_audio_embeddings[0](y[..., 0])
if self.prefix_mode == 0:
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_position(y_emb)
y_pos = self.nar_audio_prenet(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < 6:
y_emb[:, :prefix_len] += embedding_layer(
prompts[..., i + 1]
)
y_emb[:, prefix_len:] += embedding_layer(samples)
else:
for j in range(1, 8):
y_emb[:, :prefix_len] += self.nar_audio_embeddings[j](
prompts[..., j]
)
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_prenet(y_emb)
y_pos = self.nar_audio_position(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < 6:
y_emb[:, prefix_len:] += embedding_layer(samples)
assert len(codes) == 8
return torch.stack(codes, dim=-1)
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
def top_k_top_p_filtering(
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(
max(top_k, min_tokens_to_keep), logits.size(-1)
) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(
F.softmax(sorted_logits, dim=-1), dim=-1
)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
logits[indices_to_remove] = filter_value
return logits
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
# temperature: (`optional`) float
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
# top_k: (`optional`) int
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
# top_p: (`optional`) float
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
logits = logits / temperature
# Top-p/top-k filtering
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
# Sample
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
return token
|