|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
import logging |
|
import random |
|
import math |
|
from functools import reduce |
|
from itertools import repeat |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from torch.nn import Embedding as ScaledEmbedding |
|
|
|
from utils import Transpose |
|
|
|
|
|
class ActivationBalancerFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: Tensor, |
|
scale_factor: Tensor, |
|
sign_factor: Optional[Tensor], |
|
channel_dim: int, |
|
) -> Tensor: |
|
if channel_dim < 0: |
|
channel_dim += x.ndim |
|
ctx.channel_dim = channel_dim |
|
xgt0 = x > 0 |
|
if sign_factor is None: |
|
ctx.save_for_backward(xgt0, scale_factor) |
|
else: |
|
ctx.save_for_backward(xgt0, scale_factor, sign_factor) |
|
return x |
|
|
|
@staticmethod |
|
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]: |
|
if len(ctx.saved_tensors) == 3: |
|
xgt0, scale_factor, sign_factor = ctx.saved_tensors |
|
for _ in range(ctx.channel_dim, x_grad.ndim - 1): |
|
scale_factor = scale_factor.unsqueeze(-1) |
|
sign_factor = sign_factor.unsqueeze(-1) |
|
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5) |
|
else: |
|
xgt0, scale_factor = ctx.saved_tensors |
|
for _ in range(ctx.channel_dim, x_grad.ndim - 1): |
|
scale_factor = scale_factor.unsqueeze(-1) |
|
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5) |
|
neg_delta_grad = x_grad.abs() * factor |
|
return ( |
|
x_grad - neg_delta_grad, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
|
|
def _compute_scale_factor( |
|
x: Tensor, |
|
channel_dim: int, |
|
min_abs: float, |
|
max_abs: float, |
|
gain_factor: float, |
|
max_factor: float, |
|
) -> Tensor: |
|
if channel_dim < 0: |
|
channel_dim += x.ndim |
|
sum_dims = [d for d in range(x.ndim) if d != channel_dim] |
|
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32) |
|
|
|
if min_abs == 0.0: |
|
below_threshold = 0.0 |
|
else: |
|
|
|
|
|
below_threshold = ( |
|
(min_abs - x_abs_mean) * (gain_factor / min_abs) |
|
).clamp(min=0, max=max_factor) |
|
|
|
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp( |
|
min=0, max=max_factor |
|
) |
|
|
|
return below_threshold - above_threshold |
|
|
|
|
|
def _compute_sign_factor( |
|
x: Tensor, |
|
channel_dim: int, |
|
min_positive: float, |
|
max_positive: float, |
|
gain_factor: float, |
|
max_factor: float, |
|
) -> Tensor: |
|
if channel_dim < 0: |
|
channel_dim += x.ndim |
|
sum_dims = [d for d in range(x.ndim) if d != channel_dim] |
|
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims) |
|
if min_positive == 0.0: |
|
factor1 = 0.0 |
|
else: |
|
|
|
|
|
factor1 = ( |
|
(min_positive - proportion_positive) * (gain_factor / min_positive) |
|
).clamp_(min=0, max=max_factor) |
|
|
|
if max_positive == 1.0: |
|
factor2 = 0.0 |
|
else: |
|
|
|
|
|
factor2 = ( |
|
(proportion_positive - max_positive) |
|
* (gain_factor / (1.0 - max_positive)) |
|
).clamp_(min=0, max=max_factor) |
|
sign_factor = factor1 - factor2 |
|
|
|
assert not isinstance(sign_factor, float) |
|
return sign_factor |
|
|
|
|
|
class ActivationScaleBalancerFunction(torch.autograd.Function): |
|
""" |
|
This object is used in class ActivationBalancer when the user specified |
|
min_positive=0, max_positive=1, so there are no constraints on the signs |
|
of the activations and only the absolute value has a constraint. |
|
""" |
|
|
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: Tensor, |
|
sign_factor: Tensor, |
|
scale_factor: Tensor, |
|
channel_dim: int, |
|
) -> Tensor: |
|
if channel_dim < 0: |
|
channel_dim += x.ndim |
|
ctx.channel_dim = channel_dim |
|
xgt0 = x > 0 |
|
ctx.save_for_backward(xgt0, sign_factor, scale_factor) |
|
return x |
|
|
|
@staticmethod |
|
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]: |
|
xgt0, sign_factor, scale_factor = ctx.saved_tensors |
|
for _ in range(ctx.channel_dim, x_grad.ndim - 1): |
|
sign_factor = sign_factor.unsqueeze(-1) |
|
scale_factor = scale_factor.unsqueeze(-1) |
|
|
|
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5) |
|
neg_delta_grad = x_grad.abs() * factor |
|
return ( |
|
x_grad - neg_delta_grad, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
|
|
class RandomClampFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: Tensor, |
|
min: Optional[float], |
|
max: Optional[float], |
|
prob: float, |
|
reflect: float, |
|
) -> Tensor: |
|
x_clamped = torch.clamp(x, min=min, max=max) |
|
mask = torch.rand_like(x) < prob |
|
ans = torch.where(mask, x_clamped, x) |
|
if x.requires_grad: |
|
ctx.save_for_backward(ans == x) |
|
ctx.reflect = reflect |
|
if reflect != 0.0: |
|
ans = ans * (1.0 + reflect) - (x * reflect) |
|
return ans |
|
|
|
@staticmethod |
|
def backward( |
|
ctx, ans_grad: Tensor |
|
) -> Tuple[Tensor, None, None, None, None]: |
|
(is_same,) = ctx.saved_tensors |
|
x_grad = ans_grad * is_same.to(ans_grad.dtype) |
|
reflect = ctx.reflect |
|
if reflect != 0.0: |
|
x_grad = x_grad * (1.0 + reflect) - (ans_grad * reflect) |
|
return x_grad, None, None, None, None |
|
|
|
|
|
def random_clamp( |
|
x: Tensor, |
|
min: Optional[float] = None, |
|
max: Optional[float] = None, |
|
prob: float = 0.5, |
|
reflect: float = 0.0, |
|
): |
|
return RandomClampFunction.apply(x, min, max, prob, reflect) |
|
|
|
|
|
def random_cast_to_half(x: Tensor, min_abs: float = 5.0e-06) -> Tensor: |
|
""" |
|
A randomized way of casting a floating point value to half precision. |
|
""" |
|
if x.dtype == torch.float16: |
|
return x |
|
x_abs = x.abs() |
|
is_too_small = x_abs < min_abs |
|
|
|
|
|
|
|
random_val = min_abs * x.sign() * (torch.rand_like(x) * min_abs < x_abs) |
|
return torch.where(is_too_small, random_val, x).to(torch.float16) |
|
|
|
|
|
class RandomGradFunction(torch.autograd.Function): |
|
""" |
|
Does nothing in forward pass; in backward pass, gets rid of very small grads using |
|
randomized approach that preserves expectations (intended to reduce roundoff). |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, x: Tensor, min_abs: float) -> Tensor: |
|
ctx.min_abs = min_abs |
|
return x |
|
|
|
@staticmethod |
|
def backward(ctx, ans_grad: Tensor) -> Tuple[Tensor, None]: |
|
if ans_grad.dtype == torch.float16: |
|
return ( |
|
random_cast_to_half( |
|
ans_grad.to(torch.float32), min_abs=ctx.min_abs |
|
), |
|
None, |
|
) |
|
else: |
|
return ans_grad, None |
|
|
|
|
|
class RandomGrad(torch.nn.Module): |
|
""" |
|
Gets rid of very small gradients using an expectation-preserving method, intended to increase |
|
accuracy of training when using amp (automatic mixed precision) |
|
""" |
|
|
|
def __init__(self, min_abs: float = 5.0e-06): |
|
super(RandomGrad, self).__init__() |
|
self.min_abs = min_abs |
|
|
|
def forward(self, x: Tensor): |
|
if ( |
|
torch.jit.is_scripting() |
|
or not self.training |
|
or torch.jit.is_tracing() |
|
): |
|
return x |
|
else: |
|
return RandomGradFunction.apply(x, self.min_abs) |
|
|
|
|
|
class SoftmaxFunction(torch.autograd.Function): |
|
""" |
|
Tries to handle half-precision derivatives in a randomized way that should |
|
be more accurate for training than the default behavior. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, x: Tensor, dim: int): |
|
ans = x.softmax(dim=dim) |
|
|
|
|
|
|
|
if torch.is_autocast_enabled(): |
|
ans = ans.to(torch.float16) |
|
ctx.save_for_backward(ans) |
|
ctx.x_dtype = x.dtype |
|
ctx.dim = dim |
|
return ans |
|
|
|
@staticmethod |
|
def backward(ctx, ans_grad: Tensor): |
|
(ans,) = ctx.saved_tensors |
|
with torch.cuda.amp.autocast(enabled=False): |
|
ans_grad = ans_grad.to(torch.float32) |
|
ans = ans.to(torch.float32) |
|
x_grad = ans_grad * ans |
|
x_grad = x_grad - ans * x_grad.sum(dim=ctx.dim, keepdim=True) |
|
return x_grad, None |
|
|
|
|
|
def softmax(x: Tensor, dim: int): |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
return x.softmax(dim) |
|
|
|
return SoftmaxFunction.apply(x, dim) |
|
|
|
|
|
class MaxEigLimiterFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: Tensor, |
|
coeffs: Tensor, |
|
direction: Tensor, |
|
channel_dim: int, |
|
grad_scale: float, |
|
) -> Tensor: |
|
ctx.channel_dim = channel_dim |
|
ctx.grad_scale = grad_scale |
|
ctx.save_for_backward(x.detach(), coeffs.detach(), direction.detach()) |
|
return x |
|
|
|
@staticmethod |
|
def backward(ctx, x_grad, *args): |
|
with torch.enable_grad(): |
|
(x_orig, coeffs, new_direction) = ctx.saved_tensors |
|
x_orig.requires_grad = True |
|
num_channels = x_orig.shape[ctx.channel_dim] |
|
x = x_orig.transpose(ctx.channel_dim, -1).reshape(-1, num_channels) |
|
new_direction.requires_grad = False |
|
x = x - x.mean(dim=0) |
|
x_var = (x ** 2).mean() |
|
x_residual = x - coeffs * new_direction |
|
x_residual_var = (x_residual ** 2).mean() |
|
|
|
|
|
variance_proportion = (x_var - x_residual_var) / (x_var + 1.0e-20) |
|
variance_proportion.backward() |
|
x_orig_grad = x_orig.grad |
|
x_extra_grad = ( |
|
x_orig.grad |
|
* ctx.grad_scale |
|
* x_grad.norm() |
|
/ (x_orig_grad.norm() + 1.0e-20) |
|
) |
|
return x_grad + x_extra_grad.detach(), None, None, None, None |
|
|
|
|
|
class BasicNorm(torch.nn.Module): |
|
""" |
|
This is intended to be a simpler, and hopefully cheaper, replacement for |
|
LayerNorm. The observation this is based on, is that Transformer-type |
|
networks, especially with pre-norm, sometimes seem to set one of the |
|
feature dimensions to a large constant value (e.g. 50), which "defeats" |
|
the LayerNorm because the output magnitude is then not strongly dependent |
|
on the other (useful) features. Presumably the weight and bias of the |
|
LayerNorm are required to allow it to do this. |
|
|
|
So the idea is to introduce this large constant value as an explicit |
|
parameter, that takes the role of the "eps" in LayerNorm, so the network |
|
doesn't have to do this trick. We make the "eps" learnable. |
|
|
|
Args: |
|
num_channels: the number of channels, e.g. 512. |
|
channel_dim: the axis/dimension corresponding to the channel, |
|
interprted as an offset from the input's ndim if negative. |
|
shis is NOT the num_channels; it should typically be one of |
|
{-2, -1, 0, 1, 2, 3}. |
|
eps: the initial "epsilon" that we add as ballast in: |
|
scale = ((input_vec**2).mean() + epsilon)**-0.5 |
|
Note: our epsilon is actually large, but we keep the name |
|
to indicate the connection with conventional LayerNorm. |
|
learn_eps: if true, we learn epsilon; if false, we keep it |
|
at the initial value. |
|
eps_min: float |
|
eps_max: float |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_channels: int, |
|
channel_dim: int = -1, |
|
eps: float = 0.25, |
|
learn_eps: bool = True, |
|
eps_min: float = -3.0, |
|
eps_max: float = 3.0, |
|
) -> None: |
|
super(BasicNorm, self).__init__() |
|
self.num_channels = num_channels |
|
self.channel_dim = channel_dim |
|
if learn_eps: |
|
self.eps = nn.Parameter(torch.tensor(eps).log().detach()) |
|
else: |
|
self.register_buffer("eps", torch.tensor(eps).log().detach()) |
|
self.eps_min = eps_min |
|
self.eps_max = eps_max |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
assert x.shape[self.channel_dim] == self.num_channels |
|
eps = self.eps |
|
if self.training and random.random() < 0.25: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eps = eps.clamp(min=self.eps_min, max=self.eps_max) |
|
scales = ( |
|
torch.mean(x ** 2, dim=self.channel_dim, keepdim=True) + eps.exp() |
|
) ** -0.5 |
|
return x * scales |
|
|
|
|
|
def ScaledLinear(*args, initial_scale: float = 1.0, **kwargs) -> nn.Linear: |
|
""" |
|
Behaves like a constructor of a modified version of nn.Linear |
|
that gives an easy way to set the default initial parameter scale. |
|
|
|
Args: |
|
Accepts the standard args and kwargs that nn.Linear accepts |
|
e.g. in_features, out_features, bias=False. |
|
|
|
initial_scale: you can override this if you want to increase |
|
or decrease the initial magnitude of the module's output |
|
(affects the initialization of weight_scale and bias_scale). |
|
Another option, if you want to do something like this, is |
|
to re-initialize the parameters. |
|
""" |
|
ans = nn.Linear(*args, **kwargs) |
|
with torch.no_grad(): |
|
ans.weight[:] *= initial_scale |
|
if ans.bias is not None: |
|
torch.nn.init.uniform_( |
|
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale |
|
) |
|
return ans |
|
|
|
|
|
def ScaledConv1d( |
|
*args, |
|
initial_scale: float = 1.0, |
|
kernel_size: int = 3, |
|
padding: str = "same", |
|
**kwargs, |
|
) -> nn.Conv1d: |
|
""" |
|
Behaves like a constructor of a modified version of nn.Conv1d |
|
that gives an easy way to set the default initial parameter scale. |
|
|
|
Args: |
|
Accepts the standard args and kwargs that nn.Linear accepts |
|
e.g. in_features, out_features, bias=False. |
|
|
|
initial_scale: you can override this if you want to increase |
|
or decrease the initial magnitude of the module's output |
|
(affects the initialization of weight_scale and bias_scale). |
|
Another option, if you want to do something like this, is |
|
to re-initialize the parameters. |
|
""" |
|
ans = nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs) |
|
with torch.no_grad(): |
|
ans.weight[:] *= initial_scale |
|
if ans.bias is not None: |
|
torch.nn.init.uniform_( |
|
ans.bias, -0.1 * initial_scale, 0.1 * initial_scale |
|
) |
|
return ans |
|
|
|
|
|
def TransposeScaledConv1d( |
|
*args, |
|
initial_scale: float = 1.0, |
|
kernel_size: int = 3, |
|
padding: str = "same", |
|
**kwargs, |
|
) -> nn.Sequential: |
|
""" |
|
Transpose -> ScaledConv1d |
|
""" |
|
return nn.Sequential( |
|
Transpose(), |
|
ScaledConv1d( |
|
*args, |
|
initial_scale=initial_scale, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
**kwargs, |
|
), |
|
) |
|
|
|
|
|
def ScaledConv1dTranspose( |
|
*args, |
|
initial_scale: float = 1.0, |
|
kernel_size: int = 3, |
|
padding: str = "same", |
|
**kwargs, |
|
) -> nn.Sequential: |
|
""" |
|
Transpose -> ScaledConv1d |
|
""" |
|
return nn.Sequential( |
|
ScaledConv1d( |
|
*args, |
|
initial_scale=initial_scale, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
**kwargs, |
|
), |
|
Transpose(), |
|
) |
|
|
|
|
|
def TransposeConv1d( |
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs |
|
) -> nn.Sequential: |
|
""" |
|
Transpose -> Conv1d |
|
""" |
|
return nn.Sequential( |
|
Transpose(), |
|
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs), |
|
) |
|
|
|
|
|
def Conv1dTranspose( |
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs |
|
) -> nn.Sequential: |
|
""" |
|
ScaledConv1d -> Transpose |
|
""" |
|
return nn.Sequential( |
|
nn.Conv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs), |
|
Transpose(), |
|
) |
|
|
|
|
|
class SRLinear(nn.Linear): |
|
"""https://arxiv.org/abs/2303.06296 |
|
Stabilizing Transformer Training by Preventing Attention Entropy Collapse |
|
""" |
|
|
|
def __init__(self, in_features, out_features, bias=True, **kwargs): |
|
super().__init__(in_features, out_features, bias=bias, **kwargs) |
|
self.register_buffer( |
|
"u", nn.functional.normalize(torch.randn(in_features), dim=0) |
|
) |
|
with torch.no_grad(): |
|
sigma = self.get_sigma() |
|
self.register_buffer("spectral_norm", sigma) |
|
self.sigma = nn.Parameter(torch.ones(1)) |
|
|
|
def get_sigma(self): |
|
with torch.no_grad(): |
|
u = self.u |
|
v = self.weight.mv(u) |
|
v = nn.functional.normalize(v, dim=0) |
|
u = self.weight.T.mv(v) |
|
u = nn.functional.normalize(u, dim=0) |
|
self.u.data.copy_(u) |
|
return torch.einsum("c,cd,d->", v, self.weight, u) |
|
|
|
def get_weight(self): |
|
sigma = self.get_sigma() |
|
if self.training: |
|
self.spectral_norm.data.copy_(sigma) |
|
weight = (self.sigma / sigma) * self.weight |
|
return weight |
|
|
|
def forward(self, x): |
|
return nn.functional.linear(x, self.get_weight(), self.bias) |
|
|
|
|
|
class SRConv1d(SRLinear): |
|
def __init__( |
|
self, |
|
in_features, |
|
out_features, |
|
kernel_size, |
|
stride: int = 1, |
|
padding: str = "same", |
|
bias: bool = True, |
|
**kwargs, |
|
): |
|
in_features = in_features * kernel_size |
|
super().__init__(in_features, out_features, bias=bias, **kwargs) |
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
|
|
def forward(self, x): |
|
in_features = self.in_features // self.kernel_size |
|
weight = self.get_weight().view( |
|
self.out_features, in_features, self.kernel_size |
|
) |
|
return nn.functional.conv1d( |
|
x, weight, bias=self.bias, stride=self.stride, padding=self.padding |
|
) |
|
|
|
|
|
def TransposeSRConv1d( |
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs |
|
) -> nn.Sequential: |
|
""" |
|
Transpose -> SRConv1d |
|
""" |
|
return nn.Sequential( |
|
Transpose(), |
|
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs), |
|
) |
|
|
|
|
|
def SRConv1dTranspose( |
|
*args, kernel_size: int = 3, padding: str = "same", **kwargs |
|
) -> nn.Sequential: |
|
""" |
|
SRConv1d -> Transpose |
|
""" |
|
return nn.Sequential( |
|
SRConv1d(*args, kernel_size=kernel_size, padding=padding, **kwargs), |
|
Transpose(), |
|
) |
|
|
|
|
|
class ActivationBalancer(torch.nn.Module): |
|
""" |
|
Modifies the backpropped derivatives of a function to try to encourage, for |
|
each channel, that it is positive at least a proportion `threshold` of the |
|
time. It does this by multiplying negative derivative values by up to |
|
(1+max_factor), and positive derivative values by up to (1-max_factor), |
|
interpolated from 1 at the threshold to those extremal values when none |
|
of the inputs are positive. |
|
|
|
Args: |
|
num_channels: the number of channels |
|
channel_dim: the dimension/axis corresponding to the channel, e.g. |
|
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. |
|
min_positive: the minimum, per channel, of the proportion of the time |
|
that (x > 0), below which we start to modify the derivatives. |
|
max_positive: the maximum, per channel, of the proportion of the time |
|
that (x > 0), above which we start to modify the derivatives. |
|
max_factor: the maximum factor by which we modify the derivatives for |
|
either the sign constraint or the magnitude constraint; |
|
e.g. with max_factor=0.02, the the derivatives would be multiplied by |
|
values in the range [0.98..1.02]. |
|
sign_gain_factor: determines the 'gain' with which we increase the |
|
change in gradient once the constraints on min_positive and max_positive |
|
are violated. |
|
scale_gain_factor: determines the 'gain' with which we increase the |
|
change in gradient once the constraints on min_abs and max_abs |
|
are violated. |
|
min_abs: the minimum average-absolute-value difference from the mean |
|
value per channel, which we allow, before we start to modify |
|
the derivatives to prevent this. |
|
max_abs: the maximum average-absolute-value difference from the mean |
|
value per channel, which we allow, before we start to modify |
|
the derivatives to prevent this. |
|
min_prob: determines the minimum probability with which we modify the |
|
gradients for the {min,max}_positive and {min,max}_abs constraints, |
|
on each forward(). This is done randomly to prevent all layers |
|
from doing it at the same time. Early in training we may use |
|
higher probabilities than this; it will decay to this value. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_channels: int, |
|
channel_dim: int, |
|
min_positive: float = 0.05, |
|
max_positive: float = 0.95, |
|
max_factor: float = 0.04, |
|
sign_gain_factor: float = 0.01, |
|
scale_gain_factor: float = 0.02, |
|
min_abs: float = 0.2, |
|
max_abs: float = 100.0, |
|
min_prob: float = 0.1, |
|
): |
|
super(ActivationBalancer, self).__init__() |
|
self.num_channels = num_channels |
|
self.channel_dim = channel_dim |
|
self.min_positive = min_positive |
|
self.max_positive = max_positive |
|
self.max_factor = max_factor |
|
self.min_abs = min_abs |
|
self.max_abs = max_abs |
|
self.min_prob = min_prob |
|
self.sign_gain_factor = sign_gain_factor |
|
self.scale_gain_factor = scale_gain_factor |
|
|
|
|
|
|
|
|
|
self.cpu_count = 0 |
|
self.register_buffer("count", torch.tensor(0, dtype=torch.int64)) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if ( |
|
torch.jit.is_scripting() |
|
or not x.requires_grad |
|
or torch.jit.is_tracing() |
|
): |
|
return _no_op(x) |
|
|
|
count = self.cpu_count |
|
self.cpu_count += 1 |
|
|
|
if random.random() < 0.01: |
|
|
|
|
|
|
|
self.cpu_count = max(self.cpu_count, self.count.item()) |
|
self.count.fill_(self.cpu_count) |
|
|
|
|
|
|
|
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0))) |
|
|
|
if random.random() < prob: |
|
sign_gain_factor = 0.5 |
|
if self.min_positive != 0.0 or self.max_positive != 1.0: |
|
sign_factor = _compute_sign_factor( |
|
x, |
|
self.channel_dim, |
|
self.min_positive, |
|
self.max_positive, |
|
gain_factor=self.sign_gain_factor / prob, |
|
max_factor=self.max_factor, |
|
) |
|
else: |
|
sign_factor = None |
|
|
|
scale_factor = _compute_scale_factor( |
|
x.detach(), |
|
self.channel_dim, |
|
min_abs=self.min_abs, |
|
max_abs=self.max_abs, |
|
gain_factor=self.scale_gain_factor / prob, |
|
max_factor=self.max_factor, |
|
) |
|
return ActivationBalancerFunction.apply( |
|
x, |
|
scale_factor, |
|
sign_factor, |
|
self.channel_dim, |
|
) |
|
else: |
|
return _no_op(x) |
|
|
|
|
|
def penalize_abs_values_gt(x: Tensor, limit: float, penalty: float) -> Tensor: |
|
""" |
|
Returns x unmodified, but in backprop will put a penalty for the excess of |
|
the absolute values of elements of x over the limit "limit". E.g. if |
|
limit == 10.0, then if x has any values over 10 it will get a penalty. |
|
|
|
Caution: the value of this penalty will be affected by grad scaling used |
|
in automatic mixed precision training. For this reasons we use this, |
|
it shouldn't really matter, or may even be helpful; we just use this |
|
to disallow really implausible values of scores to be given to softmax. |
|
""" |
|
x_sign = x.sign() |
|
over_limit = (x.abs() - limit) > 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aux_loss = penalty * ((x_sign * over_limit).to(torch.int8) * x) |
|
|
|
|
|
x = with_loss(x, aux_loss) |
|
|
|
return x |
|
|
|
|
|
def _diag(x: Tensor): |
|
if x.ndim == 2: |
|
return x.diag() |
|
else: |
|
(batch, dim, dim) = x.shape |
|
x = x.reshape(batch, dim * dim) |
|
x = x[:, :: dim + 1] |
|
assert x.shape == (batch, dim) |
|
return x |
|
|
|
|
|
def _whitening_metric(x: Tensor, num_groups: int): |
|
""" |
|
Computes the "whitening metric", a value which will be 1.0 if all the eigenvalues of |
|
of the centered feature covariance are the same within each group's covariance matrix |
|
and also between groups. |
|
Args: |
|
x: a Tensor of shape (*, num_channels) |
|
num_groups: the number of groups of channels, a number >=1 that divides num_channels |
|
Returns: |
|
Returns a scalar Tensor that will be 1.0 if the data is "perfectly white" and |
|
greater than 1.0 otherwise. |
|
""" |
|
assert x.dtype != torch.float16 |
|
x = x.reshape(-1, x.shape[-1]) |
|
(num_frames, num_channels) = x.shape |
|
assert num_channels % num_groups == 0 |
|
channels_per_group = num_channels // num_groups |
|
x = x.reshape(num_frames, num_groups, channels_per_group).transpose(0, 1) |
|
|
|
|
|
|
|
|
|
|
|
x = x - x.mean(dim=1, keepdim=True) |
|
|
|
x_covar = torch.matmul(x.transpose(1, 2), x) |
|
x_covar_mean_diag = _diag(x_covar).mean() |
|
|
|
|
|
|
|
x_covarsq_mean_diag = (x_covar ** 2).sum() / ( |
|
num_groups * channels_per_group |
|
) |
|
|
|
metric = x_covarsq_mean_diag / (x_covar_mean_diag ** 2 + 1.0e-20) |
|
return metric |
|
|
|
|
|
class WhiteningPenaltyFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: Tensor, |
|
num_groups: int, |
|
whitening_limit: float, |
|
grad_scale: float, |
|
) -> Tensor: |
|
ctx.save_for_backward(x) |
|
ctx.num_groups = num_groups |
|
ctx.whitening_limit = whitening_limit |
|
ctx.grad_scale = grad_scale |
|
return x |
|
|
|
@staticmethod |
|
def backward(ctx, x_grad: Tensor): |
|
(x_orig,) = ctx.saved_tensors |
|
with torch.enable_grad(): |
|
with torch.cuda.amp.autocast(enabled=False): |
|
x_detached = x_orig.to(torch.float32).detach() |
|
x_detached.requires_grad = True |
|
|
|
metric = _whitening_metric(x_detached, ctx.num_groups) |
|
|
|
if random.random() < 0.005 or __name__ == "__main__": |
|
logging.info( |
|
f"Whitening: num_groups={ctx.num_groups}, num_channels={x_orig.shape[-1]}, " |
|
f"metric={metric.item():.2f} vs. limit={ctx.whitening_limit}" |
|
) |
|
|
|
(metric - ctx.whitening_limit).relu().backward() |
|
penalty_grad = x_detached.grad |
|
scale = ctx.grad_scale * ( |
|
x_grad.to(torch.float32).norm() |
|
/ (penalty_grad.norm() + 1.0e-20) |
|
) |
|
penalty_grad = penalty_grad * scale |
|
return x_grad + penalty_grad.to(x_grad.dtype), None, None, None |
|
|
|
|
|
class Whiten(nn.Module): |
|
def __init__( |
|
self, |
|
num_groups: int, |
|
whitening_limit: float, |
|
prob: Union[float, Tuple[float, float]], |
|
grad_scale: float, |
|
): |
|
""" |
|
Args: |
|
num_groups: the number of groups to divide the channel dim into before |
|
whitening. We will attempt to make the feature covariance |
|
within each group, after mean subtraction, as "white" as possible, |
|
while having the same trace across all groups. |
|
whitening_limit: a value greater than 1.0, that dictates how much |
|
freedom we have to violate the constraints. 1.0 would mean perfectly |
|
white, with exactly the same trace across groups; larger values |
|
give more freedom. E.g. 2.0. |
|
prob: the probability with which we apply the gradient modification |
|
(also affects the grad scale). May be supplied as a float, |
|
or as a pair (min_prob, max_prob) |
|
|
|
grad_scale: determines the scale on the gradient term from this object, |
|
relative to the rest of the gradient on the attention weights. |
|
E.g. 0.02 (you may want to use smaller values than this if prob is large) |
|
""" |
|
super(Whiten, self).__init__() |
|
assert num_groups >= 1 |
|
assert whitening_limit >= 1 |
|
assert grad_scale >= 0 |
|
self.num_groups = num_groups |
|
self.whitening_limit = whitening_limit |
|
if isinstance(prob, float): |
|
assert 0 < prob <= 1 |
|
self.prob = prob |
|
else: |
|
(self.min_prob, self.max_prob) = prob |
|
assert 0 < self.min_prob < self.max_prob <= 1 |
|
self.prob = self.max_prob |
|
|
|
self.grad_scale = grad_scale |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
""" |
|
In the forward pass, this function just returns the input unmodified. |
|
In the backward pass, it will modify the gradients to ensure that the |
|
distribution in each group has close to (lambda times I) as the covariance |
|
after mean subtraction, with the same lambda across groups. |
|
For whitening_limit > 1, there will be more freedom to violate this |
|
constraint. |
|
|
|
Args: |
|
x: the input of shape (*, num_channels) |
|
|
|
Returns: |
|
x, unmodified. You should make sure |
|
you use the returned value, or the graph will be freed |
|
and nothing will happen in backprop. |
|
""" |
|
if ( |
|
not x.requires_grad |
|
or random.random() > self.prob |
|
or self.grad_scale == 0 |
|
): |
|
return _no_op(x) |
|
else: |
|
if hasattr(self, "min_prob") and random.random() < 0.25: |
|
|
|
|
|
if ( |
|
_whitening_metric(x.to(torch.float32), self.num_groups) |
|
> self.whitening_limit |
|
): |
|
|
|
self.prob = self.max_prob |
|
else: |
|
self.prob = self.min_prob |
|
|
|
return WhiteningPenaltyFunction.apply( |
|
x, self.num_groups, self.whitening_limit, self.grad_scale |
|
) |
|
|
|
|
|
class WithLoss(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x: Tensor, y: Tensor): |
|
ctx.y_shape = y.shape |
|
return x |
|
|
|
@staticmethod |
|
def backward(ctx, ans_grad: Tensor): |
|
return ans_grad, torch.ones( |
|
ctx.y_shape, dtype=ans_grad.dtype, device=ans_grad.device |
|
) |
|
|
|
|
|
def with_loss(x, y): |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
return x |
|
|
|
return WithLoss.apply(x, y) |
|
|
|
|
|
def _no_op(x: Tensor) -> Tensor: |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
return x |
|
else: |
|
|
|
|
|
return x.chunk(1, dim=-1)[0] |
|
|
|
|
|
class Identity(torch.nn.Module): |
|
def __init__(self): |
|
super(Identity, self).__init__() |
|
|
|
def forward(self, x): |
|
return _no_op(x) |
|
|
|
|
|
class MaxEig(torch.nn.Module): |
|
""" |
|
Modifies the backpropped derivatives of a function to try to discourage |
|
that any given direction in activation space accounts for more than |
|
a specified proportion of the covariance (e.g. 0.2). |
|
|
|
|
|
Args: |
|
num_channels: the number of channels |
|
channel_dim: the dimension/axis corresponding to the channel, e.g. |
|
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative. |
|
max_var_per_eig: the maximum proportion of the variance of the |
|
features/channels, after mean subtraction, that can come from |
|
any given eigenvalue. |
|
min_prob: the minimum probability with which we apply this during any invocation |
|
of forward(), assuming last time we applied the constraint it was |
|
not active; supplied for speed. |
|
scale: determines the scale with which we modify the gradients, relative |
|
to the existing / unmodified gradients |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_channels: int, |
|
channel_dim: int, |
|
max_var_per_eig: float = 0.2, |
|
min_prob: float = 0.01, |
|
scale: float = 0.01, |
|
): |
|
super(MaxEig, self).__init__() |
|
self.num_channels = num_channels |
|
self.channel_dim = channel_dim |
|
self.scale = scale |
|
assert max_var_per_eig == 0.0 or max_var_per_eig > 1.0 / num_channels |
|
self.max_var_per_eig = max_var_per_eig |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
direction = torch.arange(num_channels).to(torch.float) |
|
direction = direction / direction.norm() |
|
self.register_buffer("max_eig_direction", direction) |
|
|
|
self.min_prob = min_prob |
|
|
|
|
|
|
|
self.cur_prob = 1.0 |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if ( |
|
torch.jit.is_scripting() |
|
or self.max_var_per_eig <= 0 |
|
or random.random() > self.cur_prob |
|
or torch.jit.is_tracing() |
|
): |
|
return _no_op(x) |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
eps = 1.0e-20 |
|
orig_x = x |
|
x = x.to(torch.float32) |
|
with torch.no_grad(): |
|
x = x.transpose(self.channel_dim, -1).reshape( |
|
-1, self.num_channels |
|
) |
|
x = x - x.mean(dim=0) |
|
new_direction, coeffs = self._find_direction_coeffs( |
|
x, self.max_eig_direction |
|
) |
|
x_var = (x ** 2).mean() |
|
x_residual = x - coeffs * new_direction |
|
x_residual_var = (x_residual ** 2).mean() |
|
|
|
|
|
|
|
variance_proportion = (x_var - x_residual_var) / ( |
|
x_var + 1.0e-20 |
|
) |
|
|
|
|
|
self._set_direction( |
|
0.1 * self.max_eig_direction + new_direction |
|
) |
|
|
|
if random.random() < 0.01 or __name__ == "__main__": |
|
logging.info( |
|
f"variance_proportion = {variance_proportion.item()}, shape={tuple(orig_x.shape)}, cur_prob={self.cur_prob}" |
|
) |
|
|
|
if variance_proportion >= self.max_var_per_eig: |
|
|
|
|
|
|
|
cur_prob = self.cur_prob |
|
self.cur_prob = ( |
|
1.0 |
|
) |
|
return MaxEigLimiterFunction.apply( |
|
orig_x, coeffs, new_direction, self.channel_dim, self.scale |
|
) |
|
else: |
|
|
|
|
|
self.cur_prob = 0.75 * self.cur_prob + 0.25 * self.min_prob |
|
return orig_x |
|
|
|
def _set_direction(self, direction: Tensor): |
|
""" |
|
Sets self.max_eig_direction to a normalized version of `direction` |
|
""" |
|
direction = direction.detach() |
|
direction = direction / direction.norm() |
|
direction_sum = direction.sum().item() |
|
if direction_sum - direction_sum == 0: |
|
self.max_eig_direction[:] = direction |
|
else: |
|
logging.info( |
|
f"Warning: sum of direction in MaxEig is {direction_sum}, " |
|
"num_channels={self.num_channels}, channel_dim={self.channel_dim}" |
|
) |
|
|
|
def _find_direction_coeffs( |
|
self, x: Tensor, prev_direction: Tensor |
|
) -> Tuple[Tensor, Tensor, Tensor]: |
|
""" |
|
Figure out (an approximation to) the proportion of the variance of a set of |
|
feature vectors that can be attributed to the top eigen-direction. |
|
Args: |
|
x: a Tensor of shape (num_frames, num_channels), with num_frames > 1. |
|
prev_direction: a Tensor of shape (num_channels,), that is our previous estimate |
|
of the top eigen-direction, or a random direction if this is the first |
|
iteration. Does not have to be normalized, but should be nonzero. |
|
|
|
Returns: (cur_direction, coeffs), where: |
|
cur_direction: a Tensor of shape (num_channels,) that is the current |
|
estimate of the top eigen-direction. |
|
coeffs: a Tensor of shape (num_frames, 1) that minimizes, or |
|
approximately minimizes, (x - coeffs * cur_direction).norm() |
|
""" |
|
(num_frames, num_channels) = x.shape |
|
assert num_channels > 1 and num_frames > 1 |
|
assert prev_direction.shape == (num_channels,) |
|
|
|
|
|
coeffs = (x * prev_direction).sum(dim=1, keepdim=True) + 1.0e-10 |
|
cur_direction = (x * coeffs).sum(dim=0) / ( |
|
(coeffs ** 2).sum() + 1.0e-20 |
|
) |
|
return cur_direction, coeffs |
|
|
|
|
|
class DoubleSwishFunction(torch.autograd.Function): |
|
""" |
|
double_swish(x) = x * torch.sigmoid(x-1) |
|
This is a definition, originally motivated by its close numerical |
|
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x). |
|
|
|
Memory-efficient derivative computation: |
|
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1) |
|
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x). |
|
Now, s'(x) = s(x) * (1-s(x)). |
|
double_swish'(x) = x * s'(x) + s(x). |
|
= x * s(x) * (1-s(x)) + s(x). |
|
= double_swish(x) * (1-s(x)) + s(x) |
|
... so we just need to remember s(x) but not x itself. |
|
""" |
|
|
|
@staticmethod |
|
def forward(ctx, x: Tensor) -> Tensor: |
|
requires_grad = x.requires_grad |
|
x_dtype = x.dtype |
|
if x.dtype == torch.float16: |
|
x = x.to(torch.float32) |
|
|
|
s = torch.sigmoid(x - 1.0) |
|
y = x * s |
|
|
|
if requires_grad: |
|
deriv = y * (1 - s) + s |
|
|
|
|
|
|
|
|
|
|
|
|
|
floor = -0.043637 |
|
ceil = 1.2 |
|
d_scaled = (deriv - floor) * ( |
|
255.0 / (ceil - floor) |
|
) + torch.rand_like(deriv) |
|
if __name__ == "__main__": |
|
|
|
assert d_scaled.min() >= 0.0 |
|
assert d_scaled.max() < 256.0 |
|
d_int = d_scaled.to(torch.uint8) |
|
ctx.save_for_backward(d_int) |
|
if x.dtype == torch.float16 or torch.is_autocast_enabled(): |
|
y = y.to(torch.float16) |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, y_grad: Tensor) -> Tensor: |
|
(d,) = ctx.saved_tensors |
|
|
|
floor = -0.043637 |
|
ceil = 1.2 |
|
d = d * ((ceil - floor) / 255.0) + floor |
|
return y_grad * d |
|
|
|
|
|
class DoubleSwish(torch.nn.Module): |
|
def forward(self, x: Tensor) -> Tensor: |
|
"""Return double-swish activation function which is an approximation to Swish(Swish(x)), |
|
that we approximate closely with x * sigmoid(x-1). |
|
""" |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
return x * torch.sigmoid(x - 1.0) |
|
return DoubleSwishFunction.apply(x) |
|
|
|
|
|
def BalancedDoubleSwish( |
|
d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25 |
|
) -> nn.Sequential: |
|
""" |
|
ActivationBalancer -> DoubleSwish |
|
""" |
|
balancer = ActivationBalancer( |
|
d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob |
|
) |
|
return nn.Sequential( |
|
balancer, |
|
DoubleSwish(), |
|
) |
|
|
|
|
|
def _test_max_eig(): |
|
for proportion in [0.1, 0.5, 10.0]: |
|
logging.info(f"proportion = {proportion}") |
|
x = torch.randn(100, 128) |
|
direction = torch.randn(128) |
|
coeffs = torch.randn(100, 1) |
|
x += proportion * direction * coeffs |
|
|
|
x.requires_grad = True |
|
|
|
num_channels = 128 |
|
m = MaxEig( |
|
num_channels, 1, 0.5, scale=0.1 |
|
) |
|
|
|
for _ in range(4): |
|
y = m(x) |
|
|
|
y_grad = torch.randn_like(x) |
|
y.backward(gradient=y_grad) |
|
|
|
if proportion < 0.2: |
|
assert torch.allclose(x.grad, y_grad, atol=1.0e-02) |
|
elif proportion > 1.0: |
|
assert not torch.allclose(x.grad, y_grad) |
|
|
|
|
|
def _test_whiten(): |
|
for proportion in [0.1, 0.5, 10.0]: |
|
logging.info(f"_test_whiten(): proportion = {proportion}") |
|
x = torch.randn(100, 128) |
|
direction = torch.randn(128) |
|
coeffs = torch.randn(100, 1) |
|
x += proportion * direction * coeffs |
|
|
|
x.requires_grad = True |
|
|
|
num_channels = 128 |
|
m = Whiten( |
|
1, 5.0, prob=1.0, grad_scale=0.1 |
|
) |
|
|
|
for _ in range(4): |
|
y = m(x) |
|
|
|
y_grad = torch.randn_like(x) |
|
y.backward(gradient=y_grad) |
|
|
|
if proportion < 0.2: |
|
assert torch.allclose(x.grad, y_grad) |
|
elif proportion > 1.0: |
|
assert not torch.allclose(x.grad, y_grad) |
|
|
|
|
|
def _test_activation_balancer_sign(): |
|
probs = torch.arange(0, 1, 0.01) |
|
N = 1000 |
|
x = 1.0 * ( |
|
(2.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))) - 1.0 |
|
) |
|
x = x.detach() |
|
x.requires_grad = True |
|
m = ActivationBalancer( |
|
probs.numel(), |
|
channel_dim=0, |
|
min_positive=0.05, |
|
max_positive=0.95, |
|
max_factor=0.2, |
|
min_abs=0.0, |
|
) |
|
|
|
y_grad = torch.sign(torch.randn(probs.numel(), N)) |
|
|
|
y = m(x) |
|
y.backward(gradient=y_grad) |
|
print("_test_activation_balancer_sign: x = ", x) |
|
print("_test_activation_balancer_sign: y grad = ", y_grad) |
|
print("_test_activation_balancer_sign: x grad = ", x.grad) |
|
|
|
|
|
def _test_activation_balancer_magnitude(): |
|
magnitudes = torch.arange(0, 1, 0.01) |
|
N = 1000 |
|
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze( |
|
-1 |
|
) |
|
x = x.detach() |
|
x.requires_grad = True |
|
m = ActivationBalancer( |
|
magnitudes.numel(), |
|
channel_dim=0, |
|
min_positive=0.0, |
|
max_positive=1.0, |
|
max_factor=0.2, |
|
min_abs=0.2, |
|
max_abs=0.8, |
|
min_prob=1.0, |
|
) |
|
|
|
y_grad = torch.sign(torch.randn(magnitudes.numel(), N)) |
|
|
|
y = m(x) |
|
y.backward(gradient=y_grad) |
|
print("_test_activation_balancer_magnitude: x = ", x) |
|
print("_test_activation_balancer_magnitude: y grad = ", y_grad) |
|
print("_test_activation_balancer_magnitude: x grad = ", x.grad) |
|
|
|
|
|
def _test_basic_norm(): |
|
num_channels = 128 |
|
m = BasicNorm(num_channels=num_channels, channel_dim=1) |
|
|
|
x = torch.randn(500, num_channels) |
|
|
|
y = m(x) |
|
|
|
assert y.shape == x.shape |
|
x_rms = (x ** 2).mean().sqrt() |
|
y_rms = (y ** 2).mean().sqrt() |
|
print("x rms = ", x_rms) |
|
print("y rms = ", y_rms) |
|
assert y_rms < x_rms |
|
assert y_rms > 0.5 * x_rms |
|
|
|
|
|
def _test_double_swish_deriv(): |
|
x = torch.randn(10, 12, dtype=torch.double) * 3.0 |
|
x.requires_grad = True |
|
m = DoubleSwish() |
|
|
|
tol = (1.2 - (-0.043637)) / 255.0 |
|
torch.autograd.gradcheck(m, x, atol=tol) |
|
|
|
|
|
x = torch.randn(1000, 1000, dtype=torch.double) * 3.0 |
|
x.requires_grad = True |
|
y = m(x) |
|
|
|
|
|
def _test_softmax(): |
|
a = torch.randn(2, 10, dtype=torch.float64) |
|
b = a.clone() |
|
a.requires_grad = True |
|
b.requires_grad = True |
|
a.softmax(dim=1)[:, 0].sum().backward() |
|
print("a grad = ", a.grad) |
|
softmax(b, dim=1)[:, 0].sum().backward() |
|
print("b grad = ", b.grad) |
|
assert torch.allclose(a.grad, b.grad) |
|
|
|
|
|
if __name__ == "__main__": |
|
logging.getLogger().setLevel(logging.INFO) |
|
torch.set_num_threads(1) |
|
torch.set_num_interop_threads(1) |
|
_test_softmax() |
|
_test_whiten() |
|
_test_max_eig() |
|
_test_activation_balancer_sign() |
|
_test_activation_balancer_magnitude() |
|
_test_basic_norm() |
|
_test_double_swish_deriv() |
|
|