Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from itertools import product | |
from typing import Tuple, Union | |
import numpy as np | |
def generate_gaussian_heatmaps( | |
heatmap_size: Tuple[int, int], | |
keypoints: np.ndarray, | |
keypoints_visible: np.ndarray, | |
sigma: Union[float, Tuple[float], np.ndarray], | |
) -> Tuple[np.ndarray, np.ndarray]: | |
"""Generate gaussian heatmaps of keypoints. | |
Args: | |
heatmap_size (Tuple[int, int]): Heatmap size in [W, H] | |
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) | |
keypoints_visible (np.ndarray): Keypoint visibilities in shape | |
(N, K) | |
sigma (float or List[float]): A list of sigma values of the Gaussian | |
heatmap for each instance. If sigma is given as a single float | |
value, it will be expanded into a tuple | |
Returns: | |
tuple: | |
- heatmaps (np.ndarray): The generated heatmap in shape | |
(K, H, W) where [W, H] is the `heatmap_size` | |
- keypoint_weights (np.ndarray): The target weights in shape | |
(N, K) | |
""" | |
N, K, _ = keypoints.shape | |
W, H = heatmap_size | |
heatmaps = np.zeros((K, H, W), dtype=np.float32) | |
keypoint_weights = keypoints_visible.copy() | |
if isinstance(sigma, (int, float)): | |
sigma = (sigma, ) * N | |
for n in range(N): | |
# 3-sigma rule | |
radius = sigma[n] * 3 | |
# xy grid | |
gaussian_size = 2 * radius + 1 | |
x = np.arange(0, gaussian_size, 1, dtype=np.float32) | |
y = x[:, None] | |
x0 = y0 = gaussian_size // 2 | |
for k in range(K): | |
# skip unlabled keypoints | |
if keypoints_visible[n, k] < 0.5: | |
continue | |
# get gaussian center coordinates | |
mu = (keypoints[n, k] + 0.5).astype(np.int64) | |
# check that the gaussian has in-bounds part | |
left, top = (mu - radius).astype(np.int64) | |
right, bottom = (mu + radius + 1).astype(np.int64) | |
if left >= W or top >= H or right < 0 or bottom < 0: | |
keypoint_weights[n, k] = 0 | |
continue | |
# The gaussian is not normalized, | |
# we want the center value to equal 1 | |
gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma[n]**2)) | |
# valid range in gaussian | |
g_x1 = max(0, -left) | |
g_x2 = min(W, right) - left | |
g_y1 = max(0, -top) | |
g_y2 = min(H, bottom) - top | |
# valid range in heatmap | |
h_x1 = max(0, left) | |
h_x2 = min(W, right) | |
h_y1 = max(0, top) | |
h_y2 = min(H, bottom) | |
heatmap_region = heatmaps[k, h_y1:h_y2, h_x1:h_x2] | |
gaussian_regsion = gaussian[g_y1:g_y2, g_x1:g_x2] | |
_ = np.maximum( | |
heatmap_region, gaussian_regsion, out=heatmap_region) | |
return heatmaps, keypoint_weights | |
def generate_unbiased_gaussian_heatmaps( | |
heatmap_size: Tuple[int, int], | |
keypoints: np.ndarray, | |
keypoints_visible: np.ndarray, | |
sigma: float, | |
) -> Tuple[np.ndarray, np.ndarray]: | |
"""Generate gaussian heatmaps of keypoints using `Dark Pose`_. | |
Args: | |
heatmap_size (Tuple[int, int]): Heatmap size in [W, H] | |
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) | |
keypoints_visible (np.ndarray): Keypoint visibilities in shape | |
(N, K) | |
Returns: | |
tuple: | |
- heatmaps (np.ndarray): The generated heatmap in shape | |
(K, H, W) where [W, H] is the `heatmap_size` | |
- keypoint_weights (np.ndarray): The target weights in shape | |
(N, K) | |
.. _`Dark Pose`: https://arxiv.org/abs/1910.06278 | |
""" | |
N, K, _ = keypoints.shape | |
W, H = heatmap_size | |
heatmaps = np.zeros((K, H, W), dtype=np.float32) | |
keypoint_weights = keypoints_visible.copy() | |
# 3-sigma rule | |
radius = sigma * 3 | |
# xy grid | |
x = np.arange(0, W, 1, dtype=np.float32) | |
y = np.arange(0, H, 1, dtype=np.float32)[:, None] | |
for n, k in product(range(N), range(K)): | |
# skip unlabled keypoints | |
if keypoints_visible[n, k] < 0.5: | |
continue | |
mu = keypoints[n, k] | |
# check that the gaussian has in-bounds part | |
left, top = mu - radius | |
right, bottom = mu + radius + 1 | |
if left >= W or top >= H or right < 0 or bottom < 0: | |
keypoint_weights[n, k] = 0 | |
continue | |
gaussian = np.exp(-((x - mu[0])**2 + (y - mu[1])**2) / (2 * sigma**2)) | |
_ = np.maximum(gaussian, heatmaps[k], out=heatmaps[k]) | |
return heatmaps, keypoint_weights | |
def generate_udp_gaussian_heatmaps( | |
heatmap_size: Tuple[int, int], | |
keypoints: np.ndarray, | |
keypoints_visible: np.ndarray, | |
sigma: float, | |
) -> Tuple[np.ndarray, np.ndarray]: | |
"""Generate gaussian heatmaps of keypoints using `UDP`_. | |
Args: | |
heatmap_size (Tuple[int, int]): Heatmap size in [W, H] | |
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) | |
keypoints_visible (np.ndarray): Keypoint visibilities in shape | |
(N, K) | |
sigma (float): The sigma value of the Gaussian heatmap | |
Returns: | |
tuple: | |
- heatmaps (np.ndarray): The generated heatmap in shape | |
(K, H, W) where [W, H] is the `heatmap_size` | |
- keypoint_weights (np.ndarray): The target weights in shape | |
(N, K) | |
.. _`UDP`: https://arxiv.org/abs/1911.07524 | |
""" | |
N, K, _ = keypoints.shape | |
W, H = heatmap_size | |
heatmaps = np.zeros((K, H, W), dtype=np.float32) | |
keypoint_weights = keypoints_visible.copy() | |
# 3-sigma rule | |
radius = sigma * 3 | |
# xy grid | |
gaussian_size = 2 * radius + 1 | |
x = np.arange(0, gaussian_size, 1, dtype=np.float32) | |
y = x[:, None] | |
for n, k in product(range(N), range(K)): | |
# skip unlabled keypoints | |
if keypoints_visible[n, k] < 0.5: | |
continue | |
mu = (keypoints[n, k] + 0.5).astype(np.int64) | |
# check that the gaussian has in-bounds part | |
left, top = (mu - radius).astype(np.int64) | |
right, bottom = (mu + radius + 1).astype(np.int64) | |
if left >= W or top >= H or right < 0 or bottom < 0: | |
keypoint_weights[n, k] = 0 | |
continue | |
mu_ac = keypoints[n, k] | |
x0 = y0 = gaussian_size // 2 | |
x0 += mu_ac[0] - mu[0] | |
y0 += mu_ac[1] - mu[1] | |
gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) | |
# valid range in gaussian | |
g_x1 = max(0, -left) | |
g_x2 = min(W, right) - left | |
g_y1 = max(0, -top) | |
g_y2 = min(H, bottom) - top | |
# valid range in heatmap | |
h_x1 = max(0, left) | |
h_x2 = min(W, right) | |
h_y1 = max(0, top) | |
h_y2 = min(H, bottom) | |
heatmap_region = heatmaps[k, h_y1:h_y2, h_x1:h_x2] | |
gaussian_regsion = gaussian[g_y1:g_y2, g_x1:g_x2] | |
_ = np.maximum(heatmap_region, gaussian_regsion, out=heatmap_region) | |
return heatmaps, keypoint_weights | |